P.E.S. College of Engineering, Mandya - 571401 (An Autonomous Institution affiliated to VTU, Belagavi)
 Third Semester, B.E. - Semester End Examination; Dec. - 2019
 Transform Calculus Fourier series and Numerical Technique
 (Common to all Branches)

Time: 3 hrs
Max. Marks: 100

Course Outcomes

The Students will be able to:
CO1: Apply the knowledge of calculus to solve problems related to polar curves and its applications in determining the bentness of a curve.
CO2: Explain mean value theorems and evaluate the indeterminate form and power series using Taylors and Maclaurin's series.
CO3: Differentiate the function of several variables differentiate the composite function. Evaluate the vector differentiation.
CO4: Evaluate some standard integrals by applying reduction formula and solve application problems. Solve differential equations of first order and solve application problems in engineering field.
Note: I) PART - A is compulsory, one question from each unit.
II) PART - B: Answer Two sub-questions for Maximum of 18 marks from each unit.

Q. No.

Questions

Marks BLs COs
I : PART - A10

I a. Construct the divided difference table for the data given below:

X	2	4	5	6
Y	10	96	196	350

2 L1 CO1
b. Write the first derivative of Newton's backward interpolation formula upto $4^{\text {th }}$ degree terms.
c. Define complex form of Fourier Series of $f(x)$ having period 2π, where $-\pi<x<\pi$

2 L1 CO3
d. Define Z-Transform of u_{n}.

2
e. Form the partial differential equation by eliminating the arbitrary constants $2 z=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$
II : PART - B90

UNIT - I

1 a. i) Define Extrapolation.
ii) From the following data estimate the number of students scoring the marks more than 40 but less than 45 marks.

L1 CO1

Marks	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
No. of Students	31	42	51	35	31

b. i) Write the Lagrange's inverse interpolation formula for $x=f(y)$.
ii) The following table gives the normal weights of babies during the first eight months of life.
$9 \quad \mathrm{~L} 2 \mathrm{CO} 1$

Age (Months)	0	2	5	8
Weight (Pounds)	6	10	12	16

Estimate the weight of the baby at the age of seven months using Lagrange's interpolation formula.
c. i) Write Gauss's forward interpolation formula up to $4^{\text {th }}$ degree terms.
ii) Apply Stirling's formula to find the cubic polynomial satisfying,
$9 \quad$ L3 CO1
$f(-4)=-25, f(-2)=1, f(0)=3, f(2)=29, f(4)=127$ and hence find $f(3)$.

UNIT - II

2 a. Find maximum and minimum values of the function $y=f(x)$ from the following data using Newton's forward interpolation formula.

L1 CO2

x	1	3	5	7	9
y	9	11	13	63	209

b. i) Write the Simpson's $\left(\frac{1}{3}\right)^{r d}$ rule for $n=6$.
ii) Use Simpson's $\left(\frac{3}{8}\right)^{\text {th }}$ rule to obtain the approximate value of,

L3 CO2 $\int_{0}^{0.3} \sqrt{\left(1-8 x^{3}\right)} d x$ by considering 6 equal intervals.
c. i) Write Boole's rule for $n=8$.
ii) Evaluate $\int_{0}^{1} \frac{x}{1+x^{2}} d x$ by Weddle's rule taking seven ordinates and hence find $\log _{e} 2$

UNIT - III

3 a. Obtain the Fourier Series for the function: $f(x)=\left\{\begin{array}{ccc}-\pi & \text { in } & -\pi<x<0 \\ x & \text { in } & 0<x<\pi\end{array}\right.$. Hence deduce that $\frac{\pi^{2}}{8}=\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots . .$.
b. i) Define cosine half range Fourier series $f(x)$ in $(0, \pi)$
ii) Obtain the sine half range Fourier series of $f(x)=\left\{\begin{array}{l}\frac{1}{4}-x \text { in } 0<x<\frac{1}{2} \\ x-\frac{3}{4} \text { in } \frac{1}{2}<x<1\end{array}\right.$

9 L3 CO3

L2 CO3

x	0	$\pi / 3$	$2 \pi / 3$	π	$4 \pi / 3$	$5 \pi / 3$	2π
y	1.98	1.30	1.05	1.30	-0.88	-0.25	1.98

4 a. Find the Fourier Transform of,

$$
f(x)=\left\{\begin{array}{cc}
1-x^{2},|x|<1 \\
0, & |x| \geq 1
\end{array}\right.
$$

Find the Fourier transform of $f(x)$ and hence find the value of,
$\int_{0}^{1} \frac{x \cos x-\sin x}{x^{3}} d x$
b. Solve the integral equation,

$$
\int_{0}^{\infty} f(\theta) \cos \alpha \theta d \theta=\left\{\begin{array}{cc}
1-\alpha, & 0 \leq \alpha \leq 1 \\
0, & \alpha>1
\end{array} \text { and Hence evaluate } \int_{0}^{\infty} \frac{\sin ^{2} t}{t^{2}} d t\right.
$$

$9 \quad \mathrm{~L} 2 \mathrm{CO} 4$
$9 \quad$ L3 $\mathbf{C O} 4$
c. i) Find the Z-transform of $(n+1)^{2}$
ii) Solve by using Z-transforms : $Y_{n+2}-4 y_{n}=0$ given that $y_{0}=0$ and $y_{1}=2$.

UNIT - V

5 a. i) Solve by direct integration $\frac{\partial^{2} y}{\partial x \partial t}=0, \quad z=z(x, t)$
ii) Form the Partial differential equation by elimination the arbitrary function $\varphi\left(x+y+z, \quad x^{2}+y^{2}-z^{2}\right)=0$
b. i) Define Homogeneous particular equation.
ii) Solve $x\left(y^{2}-z^{2}\right) p+y\left(z^{2}-x^{2}\right) q=z\left(x^{2}-y^{2}\right)$
c. Obtain the various possible solutions of the two dimensional Laplace equations $u_{x x}+u_{y y}=0$ by the method of separation of variables.
$9 \quad$ L3 \quad CO4

L3 CO4
$9 \quad \mathrm{~L} 1 \quad \mathrm{CO} 4$

