	<i>U.S.N</i>			
	P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Third Semester, B.E Semester End Examination; Dec 201	19		
	Transform Calculus Fourier series and Numerical Techniqu			
Timo	(Common to all Branches) 3 hrs	ax. Ma	rka	100
Tune.	Course Outcomes		ns.	100
	udents will be able to:			
(apply the knowledge of calculus to solve problems related to polar curves and its applications in dete of a curve.	-		
CO3: D CO4: E	Explain mean value theorems and evaluate the indeterminate form and power series using Taylors and Differentiate the function of several variables differentiate the composite function. Evaluate the vecto Evaluate some standard integrals by applying reduction formula and solve application problems. Solve equations of first order and solve application problems in engineering field.	r differen	tiatior	
Note:	I) PART - A is compulsory, one question from each unit.			
	II) PART - B: Answer Two sub-questions for Maximum of 18 marks from each unit.			
Q. No.	Questions	Marks	BLs	COs
	I : PART - A	10		
I a.	Construct the divided difference table for the data given below:			
	X 2 4 5 6	2	L1	CO1
	Y 10 96 196 350			
b.	Write the first derivative of Newton's backward interpolation formula upto 4 th	2	L1	CO2
	degree terms.			
с.	Define complex form of Fourier Series of $f(x)$ having period 2π , where $-\pi < x < \pi$	2	L1	CO3
d.	Define Z-Transform of u_n .	2	L1	CO4
e.	Form the partial differential equation by eliminating the arbitrary constants			
	$2z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$	2	L1	CO4
	$a^2 b^2$			
	II : PART – B	90		
	UNIT – I	18		
1 a.	i) Define Extrapolation.			
	ii) From the following data estimate the number of students scoring the marks			
	more than 40 but less than 45 marks.	9	L1	CO1
	Marks 30 - 40 40 - 50 50 - 60 60 - 70 70 - 80			
	No. of Students 31 42 51 35 31			
b.	i) Write the Lagrange's inverse interpolation formula for $x = f(y)$.			
	ii) The following table gives the normal weights of babies during the first eight			
	months of life.	9	L2	CO1
	Age (Months) 0 2 5 8			
	Weight (Pounds) 6 10 12 16			
	Contd2			

P17MA31

Page No... 1

	Estimate the weight of the baby at the age of seven months using Lagrange's			
	interpolation formula.			
c.	i) Write Gauss's forward interpolation formula up to 4 th degree terms.			
	ii) Apply Stirling's formula to find the cubic polynomial satisfying,	9	L3	CO1
	f(-4) = -25, $f(-2) = 1$, $f(0) = 3$, $f(2) = 29$, $f(4) = 127$ and hence find $f(3)$.			
	UNIT – II	18		
2 a.	Find maximum and minimum values of the function $y = f(x)$ from the following			
	data using Newton's forward interpolation formula.	9	L1	CO2
	x 1 3 5 7 9			
	y 9 11 13 63 209			
b.	i) Write the Simpson's $\left(\frac{1}{3}\right)^{rd}$ rule for $n = 6$.			
	ii) Use Simpson's $\left(\frac{3}{8}\right)^{th}$ rule to obtain the approximate value of,	9	L3	CO2
	$\int_{0}^{0.3} \sqrt{(1-8x^3)} dx$ by considering 6 equal intervals.			
c.	i) Write Boole's rule for $n = 8$.			
	ii) Evaluate $\int_{0}^{1} \frac{x}{1+r^{2}} dx$ by Weddle's rule taking seven ordinates and hence find	9	L3	CO2
	I) Dividual $J_0 + x^2$ and by the date is rate taking seven or analysis and hence that		L3	02
	$\log_e 2$			
	UNIT - III	18		
3 a.	Obtain the Fourier Series for the function:			
	$f(x) = \begin{cases} -\pi & \text{in } -\pi < x < 0\\ x & \text{in } 0 < x < \pi \end{cases}$. Hence deduce that $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$	9	L3	CO3
b.	i) Define cosine half range Fourier series $f(x)$ in $(0, \pi)$			
	$\begin{bmatrix} 1 & 1 \end{bmatrix}$			
	ii) Obtain the sine half range Fourier series of $f(x) = \begin{cases} \frac{1}{4} - x \text{ in } 0 < x < \frac{1}{2} \\ x - \frac{3}{4} \text{ in } \frac{1}{2} < x < 1 \end{cases}$	9	L3	CO3
	$x - \frac{3}{4}$ in $\frac{1}{2} < x < 1$			
c.	Express y as a Fourier series upto the second harmonics given the following data:			
		9	L2	CO3
	x 0 $\pi/3$ $2\pi/3$ π $4\pi/3$ $5\pi/3$ 2π y 1.98 1.30 1.05 1.30 -0.88 -0.25 1.98			
	y 1.50 1.65 1.65 -0.66 -0.25 1.96			
	Contd3			

P17MA31

	UNIT - IV	18		
4 a.	Find the Fourier Transform of, $f(x) = \begin{cases} 1 - x^2, x < 1\\ 0, x \ge 1 \end{cases}$ Find the Fourier transform of $f(x)$ and hence find the value of, $\int_{0}^{1} \frac{x \cos x - \sin x}{x^3} dx$	9	L2	CO4
b.	Solve the integral equation, $\int_{0}^{\infty} f(\theta) \cos \alpha \theta d\theta = \begin{cases} 1 - \alpha, & 0 \le \alpha \le 1 \\ 0, & \alpha > 1 \end{cases} \text{ and Hence evaluate } \int_{0}^{\infty} \frac{\sin^{2} t}{t^{2}} dt$	9	L3	CO4
с.	i) Find the Z-transform of $(n+1)^2$ ii) Solve by using Z-transforms : $Y_{n+2} - 4y_n = 0$ given that $y_0 = 0$ and $y_1 = 2$.	9	L2	CO4
	UNIT - V	18		
5 a.	i) Solve by direct integration $\frac{\partial^2 y}{\partial x \partial t} = 0$, $z = z(x, t)$ ii) Form the Partial differential equation by elimination the arbitrary function $\varphi(x+y+z, x^2+y^2-z^2)=0$	9	L1	CO4
b.	i) Define Homogeneous particular equation. ii) Solve $x(y^2 - z^2)p + y(z^2 - x^2)q = z(x^2 - y^2)$	9	L3	CO4
с.	Obtain the various possible solutions of the two dimensional Laplace equations $u_{xx} + u_{yy} = 0$ by the method of separation of variables.	9	L3	CO4

* * *