	P17ME53 Page No 1	
	U.S.N	
	P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Fifth Semester, B.E Mechanical Engineering Semester End Examination; Dec 2019 Turbo Machines	
	Time: 3 hrs Max. Marks: 100	
	<i>Note:</i> Answer <i>FIVE</i> full questions, selecting <i>ONE</i> full question from each unit. UNIT - I	
1 a.	Derive the alternate form of Euler-Turbine equation with components of energy transfer.	10
b.	At a 50% reaction stage axial flow turbine, the mean blade diameter is 0.6 m the maximum	
	utilization factor is 0.9 with a steam flow rate of 10 kg/s. Calculate the absolute velocities and	10
	power developed, if the speed is 2000 rpm.	
2 a.	Draw the velocity triangles with conditions for the following in turbines:	10
	i) Discharge is radial ii) Blades are radial	10
b.	Define a turbo machine. State the difference between turbo machine and positive displacement	
	machine with respect to,	10
	i) Action ii) Volumetric efficiency	10
	iii) Mechanical features iv) Operation	
	UNIT - II	
3 a.	Define unit quantities and obtain the expression for the same with significance.	10
b.	A 137 mm diameter jet of water is suing from a nozzle impinges on the buckets of a pelton wheel	
	and the jet is deflected through an angle of 135°. The head available at the nozzle is 400 m.	10
	Assume $C_v = 0.97$ and speed ratio = 0.46 with a reduction in relative velocity of 15%, Find;	
	i) Force exerted by the jet in the tangential direction ii) Power developed by the turbine	
4 a.	With usual notation, prove that the hydraulic efficiency, $\eta_{hy} = \frac{2U(vw_1 + vw_2)}{V_1^2}$ for Pelton wheel.	10
b.	Design a Pelton wheel for a head of 60 m, when running at 200 rpm. It develops 95.64 kW shaft	
	power. The velocity of bucket is 0.45 times the jet velocity. Take overall efficiency to be 0.85 and	10
	velocity coefficient of 0.98.	
	UNIT - III	
5 a.	The external and internal diameters of a Francis turbine are 1.2 m and 0.6 m respectively. The	
	head of the turbine is 22 m and the velocity of flow is constant and is 2.5 m/s. The guide blade	

angle is 10° and vanes of runner are radial at inlet. If the discharge is radial at outlet. Determine;

i) Speed of turbine

iii) Draw velocity triangles

Contd...2

10

ii) The vane angle at outlet

	P17ME53 Page No 2	
b.	Why draft tube is required for reaction turbines? Obtain an expression for efficiency of draft tube.	10
6 a.	State the important features of Kaplan turbine.	4
b.	In a power plant, a Kaplan turbine operates a 5 MW generator at 150 rpm under a head of 5.5 M.	
	The generator efficiency is 93% and overall efficiency of turbine is 88%. Calculate the total	6
	discharge through turbine.	
c.	A Kaplan turbine runner is to be designed for 7357.5 kW shaft power. The net head is 5.5 m.	
	Assume speed ratio = 2.09 , flow ratio of 0.68, overall efficiency of 60%, the diameter of boss is	10
	1/3 of runner diameter. Find;	10
	i) Diameter of runner ii) Speed iii) Specific speed	
	UNIT - IV	
7 a.	Explain the need for compounding. With sketch, explain velocity compounding.	8
b.	In a single stage impulse turbine, the diameter of blade ring is 1m and speed is 3000 rpm. The	
	steam is issued from a nozzle at 300 m/s and nozzle angle is 20°. The blades are equiangular. If	12
	$V_{r2}/V_{r1} = 0.8$. Find the power developed when the axial thrust on the blade is 90 N.	
8 a.	Prove that for 50% degree of reaction, the velocity triangles are symmetric? Name the turbine.	8
b.	Obtain an expression for maximum blade efficiency in a reaction staging.	8
c.	Explain the effect of speed ratio on the blade efficiency in a turbine staging (impulse).	4
	UNIT - V	
9 a.	A centrifugal pump is running at a speed of 1000 rpm. The outlet vane angle is 45° and velocity	
	of flow at outlet is 2.5 m/s, the discharge through the pump is 200 LPS when the pump is working	
	against a head of 20 m. If the Manometric efficiency is 80%. Determine;	10
	i) Diameter of impeller	
	ii) Width of impeller at outlet	
b.	Explain the different ways of expressing Manometric head in a centrifugal pump with equations.	10
10 a.	Obtain an expression for minimum speed for starting a centrifugal pump.	6
b.	Explain the necessity of primping a pump.	4
с.	A 3 stage centrifugal pump has impeller 40 cm in diameter and 2 cm wide at outlet. The vane tip	
	angle at outlet is 45° and reduces the circumferential area by 10%. The Manometric	10
	efficiency = 90% and overall efficiency is 80% . Determine the head generated by the pump when	
	running at 1000 rpm delivering 50 LPS, what should be the shaft power?	