

P17ME35

Page No... 2

		-
c.	In a steady flow process the mass flow of fluid is 10 kg/min the properties of fluid at entrance are	
	$P_1 = 2$ Bar, $V_1 = 20$ m ³ / kg, velocity 120 m/s, $U_1 = 251$ kJ/kg. The exit condition are $P_2= 6$ Bar,	0
	$V_2 = 10 \text{ m}^3/\text{s}$, velocity = 200 m/s, U_2 = 837 kJ/kg. The fluid receives heat at the rate of 126 kJ/s	9
	and rises in elevates by 30 m. Calculate the power output from the system.	
	UNIT - III	18
3 a.	Define pure substance. Draw temperature-volume diagram and mention salient points on the neat diagram.	9
b.	Steam is compressed reversibly and adiabatically from a pressure of 1.4 Bar and 0.9 dry to a	
	pressure of 13 Bar. Determine;	
	i) Final temperature ii) Increase in specific enthalpy iii) Work done on steam	9
	Take C_p of steam = 2.09 kJ/ kg-K	
с.	Sketch and explain combined throttling and separating colorimeter and show that $x = x_1 * x_2$.	9
0.	UNIT - IV	18
4 a.	Define the two statements of II-law of thermodynamics show that violation of Claussius	10
u.	statement violation the Kevin plank statement.	9
b.	A carnet engine operates between two reservoirs at temperature of 1000 K and 300 K. The engine	
	drives a reversible refrigerator which operates between 300 K and 250 K. The heat transfer to the	
	engine in 2000 kJ and the net output of the combined system of engine and refrigerator is 200 kJ.	9
	Evaluate the heat transfer from the reservoirs at 250 K to the refrigerator and the net heat transfer	-
	to the reservoir at 300 K.	
с.	A reversible engine working in a cycle takes 4800 kJ of heat from a source at 800 K per minute	
	and develops 20 kW power. The engine rejects heat to two reservoirs at 300 K and 360 K.	9
	Determine the heat rejected to each sink.	,
	UNIT - V	18
5 a.	Derive two important thermodynamic relations and hence derive an expression for change in	10
5 u.	entropy of an ideal gas.	9
b.	3 m ³ of air at 200°C and 9 Bar is heated until its temperature reaches to 250°C and pressure	
0.	10 Bar. Calculate the heat and work transfer and changes in enthalpy and entropy.	9
)
2	Take $C_p = 1.025$ kJ/kg-K and $C_v = 0.725$ kJ/kg-K A thermal energy source at 800°K lesses 2000 kL of heat to a sink at i) 500 K iii) 750 K	
с.	A thermal energy source at 800°K losses 2000 kJ of heat to a sink at, i) 500 K ii) 750 K.	9
	Determine which heat transfer process is more irreversible.	

* * *