\square
P.E.S. College of Engineering, Mandya - 571401
(An Autonomous Institution affiliated to VTU, Belagavi)
Third Semester, B.E. - Automobile Engineering
Semester End Examination; Dec. - 2019
Fluid Mechanics
Time: 3 hrs
Max. Marks: 100
Note: i) PART - A is compulsory. Two marks for each question.
ii) PART - B: Answer any Two sub questions (from a, b, c) for Maximum of $\mathbf{1 8}$ marks from each unit.
Q. No. Questions
I : PART - A 10
I a. Define Weight density and Mass density. 2
b. Define; i) Buoyancy and ii) Metacentre. 2
c. Define Euler's equation of motion of fluid. 2
d. Differentiae Subsonic and Supersonic flow. 2
e. State "Buckingham's Π theorem". 2
II : PART - B 90
UNIT - I 18
1 a . Classify any four types of fluids and represent in a shear stress and velocity gradient graph. 9
b. Define differential Manometers. Derive a pressure difference equation of U-tube manometerwith sketches.
c. A vertical cylinder of diameter 180 mm rotates concentrically inside another cylinder of 181.2 mm . Both the cylinder is 300 mm high. The space between cylinders is filled with a liquid of unknown viscosity. Determine the liquid viscosity if a torque of $20 \mathrm{~N}-\mathrm{m}$ is required to rotate the Inner cylinder at 120 rpm .
UNIT - II
2 a . Derive an expression for the depth of centre of pressure from free surface of liquid of an Inclined plane surface submerged in liquid.
b. Derive the expression for meta-centric height of a floating body by analytical method.
c. A wooden cylinder of specific gravity 0.6 and circular in cross section is required to float in oil of specific gravity 0.9 , find L/D ratio for the cylinder to float with its longitudinal axis vertical in oil, where L is the height of cylinder and D is its diameter.

UNIT - III

3 a. Derive an expression for continuity equation in 3-D flow and deduce it to 2-D flow.
b. Obtain an expression for Euler's equation of motion along stream line and deduce it to Bernoulli's equation.
c. The velocity potential for ϕ is given by, $\phi=\frac{-x y^{3}}{3}-x^{2}+\frac{x^{2} y}{3}+y^{2}$. Calculate the velocity components in x and y directions. Check the possibility of such flow.

UNIT - IV
4 a. Starting from first principles, show that for Laminar flow between fixed parallel plates the mean velocity is $2 / 3^{\text {rd }}$ of maximum velocity.
b. Show that velocity of sound wave in a compressible fluid medium is given by $C=\sqrt{\frac{K}{\rho}}$ where K and ρ are bulk modulus of elasticity and density of fluid respectively
c. Calculate the velocity and Mach number of a supersonic air craft flying at an altitude of 1200 m when a temperature is 300 K . Sound of air craft is heard 2 second after passage of air craft over the head of an observer. Take; $\gamma=1.41, \mathrm{R}=287 \mathrm{~J} / \mathrm{kgK}$.

UNIT - V

5 a. Derive Darcy-Weisbach equation.
b. Explain different types of similitude.
c. Assume the viscous force ' F ' exerted by a fluid on sphere of diameter D depends on viscosity μ of mass density ρ and velocity of motion ' V ' of the sphere. Obtain the expression for shear force ' F ', using Buckingham's Π-theorem method.

