P18EC15 Page No... 1

U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

First Semester, B.E. - Semester End Examination; April - 2021 **Basic Electronics**

(Common to all Branches)

Time: 3 hrs Max. Marks: 100

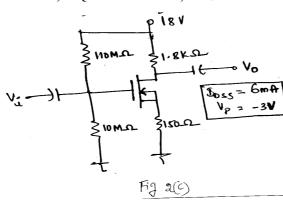
Course Outcomes

The Students will be able to:

- CO1: Apply knowledge of physics and mathematics to understand operation of PN diodes, Zener diodes MOSFET, solar cells, LCD, CRT, Transducers, modulation techniques and Opamps.
- CO2: Analyze circuits built with diodes, Zener diodes, MOSFET and Opamp.
- CO3: Design simple circuit to perform rectification, voltage regulation, Opamp based amplifier, summer and filter, MOSFET based amplifier, digital circuit.
- CO4: Analyze and implement basic Digital Electronic circuits for a given application using knowledge of Boolean Algebra and Basic gates.
- CO5: Discuss different modulation techniques and communication systems.

Cig. 10)

Note: I) **PART - A** is compulsory. **Two** marks for each question.


Q. No.	Questions	Marks	BLs	COs	POs
	I: PART - A	10			
I a.	Draw the block diagram of power supply unit.	2	L1	CO1	PO1
b.	List any two differences between Deflection type and Enhancement type MOSFET.	2	L1	CO1	PO1
c.	List the ideal characteristics of Op-Amp.	2	L1	CO1	PO1
d.	Obtain 1's and 2's complement of (011010) ₂ .	2	L1	CO4	PO2
e.	Differentiate the characteristics between Amplitude Modulation (AM) and Frequency Modulation (FM).	2	L1	CO1	PO1
II: PART - B					
	UNIT - I	18			
1 a.	With necessary circuit diagram and wave forms, explain center tapped full wave rectifier.	9	L3	CO2	PO2
b.	Define Voltage regulation. Analyze the working of Zener diode as voltage regulator with fixed $V_{\rm i}$ and variable $R_{\rm L}$.	9	L3	CO2	PO2
c.	Define Load line. Determine I_{DQ} and V_{DQ} for the network shown in				
	Fig.1(c).				
	8v =	9	L2	CO3	PO2

P18EC15

UNIT - II

- 18
- Describe the operation and characteristics of *n*-channel deflection type MOSFET with necessary diagram and equation.
- 9 L2 CO₂ PO₂
- b. Explain the construction, operation of CMOS. Also illustrate the working of CMOS inverter.
- 9 L2 CO₂ PO₂

- c. Determine the following for the network in the Fig.2(c):
 - i) V_{GSQ}
- ii) I_{DQ}
- iii) V_{DS}

9 L2 CO₃ PO₂

UNIT - III

18

- 3 a. Determine the output voltage of an Op-Amp for input voltage of $V_{i1} = 350 \mu V$ and $V_{i2} = 200 \mu V$. The amplifier has a differential gain of $A_d = 4000$ and the value of CMRR is i) 1000 and ii) 10^6 , conclude by comparing the results.
- 9 L3 CO₂ PO₂
- b. Explain the Op-amp with necessary circuit diagram and equations for the following:
- 9 CO₃ PO₂ L2

- i) 2-input inverting summing amplifier
- ii) Integrator
- Derive the expression for the output voltage and gain of an inverting Op-Amp with neat circuit diagram and equivalent diagram.
- 9 CO₄ PO₂ L4

UNIT-IV

18

- 4 a. Design and implement the full adder using 2 half adders with characteristics equation for sum and carry.
- 9 CO₄ PO₂ L4

- b. Compute the following:
 - $i) (1234.12)_{10} = ()_2 = ()_8 = ()_{16}$

9 L2 CO₄ PO₂

- ii) (1010101) x (010111)
- iii) Perform binary subtraction using 2's compliment (15)₁₀-(03)₁₀
- Implement the following logic gates using only NAND and NOR:
- 9 L2 CO₄ PO₂

- i) AND
- ii) OR
- iii) XOR

P18EC15			Page No 3		
	UNIT - V	18			
5 a.	Explain super hetero dyne receiver used in radio receivers with neat diagram.	9	L2	CO5 PO2	
b.	Write a short note on; i) Resistive transducer ii) Capacitive transducer	9	L2	CO5 PO2	
c.	Explain Amplitude Modulation (AM) with wave forms and equation along with spectrum diagram of AM wave.	9	L2	CO1 PO1	