Max. Marks: 100

P.E.S. College of Engineering, Mandya - 571 401

U.S.N

(An Autonomous Institution affiliated to VTU, Belagavi)

Third Semester, B.E. - Electronics and Communication Engineering

Semester End Examination; March - 2021

Analog Electronic Circuits

Time: 3 hrs

Course Outcomes

The Students will be able to:

CO1 - Apply the knowledge of physics to describe the operation and characteristics of Op-Amps.

CO2 - Discuss the working of op-amp applications, signal generators, voltage regulators, ADC, DAC and PLL.

CO3 - Analyze the frequency response, stability and applications of op-amps.

CO4 - **Design** the different op-amp applications circuits, signal generators, voltage regulators, ADC, DAC for a given specifications. CO5 - **Work** as individual or in groups to model different op-amp circuits using simulation tools.

<u>Note</u>: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 marks from each unit.

Q. No.	Questions		BLs COs POs
Q . 110.	I : PART - A	10	
I a.	Define PSRR.	2	L1 CO1 PO1
b.	Mention the frequency compensation methods.	2	L1 CO1 PO1
c.	Draw the circuit diagram of negative precision rectifier.	2	L1 CO1 PO1
d.	What should be the value of gain and the total phase shift around a loop of RC	2	
	phase shift oscillator circuit?	2	L1 CO2 PO2
e.	Define lock range and capture range related PLL.	2	L1 CO1 PO1
	II : PART - B	90	
	UNIT - I	18	
1 a.	Design op-amp non-inverting amplifier with a voltage gain of 50 to produce an output voltage of 2 V.	9	L3 CO3 PO3
b.	With a circuit and design steps, explain the operation of high input impedance capacitor coupled voltage follower.	9	L2 CO2 PO2
c.	Sketch an op-amp circuit to output inverted amplified sum of two input		
	voltages. Design this circuit to give sum of the two inputs which each ranges	9	L2 CO2 PO2
	from 0.5 V to 1 V and the gain of the circuit is 2.		
	UNIT - II	18	
2 a.	Describe the concept of frequency compensation and with a neat diagram, explain how compensation is provided internally?	9	L2 CO2 PO2
b.	Sketch the circuit of precision voltage source with Zener diode and design it to		
	provide the output of 12 V. The available supply is ± 15 V. Provide the	9	L2 CO3 PO3
	arrangement for $\pm 5\%$ tolerance of Zener diode voltage.	-	
C	With a neat circuit diagram, explain the operation of inverting Schmitt trigger.		
ι.		0	
	Using 741 op-amp with a supply voltage of ± 12 V, design a inverting Schmitt	9	L3 CO4 PO3
	trigger circuit to have trigger points of UTP = 0 V and LTP = -1 V.		

P18EC32		Page No 2
UNIT - III	18	
3 a. With a neat circuit, explain the working of full wave precision rectifier with input and output wave forms and with necessary equations.	9	L2 CO2 PO2
b. Explain the operation of sample and hold circuit and discuss its performance parameters.	9	L2 CO2 PO2
c. Explain operation of 555 Timer as an astable multivibrator. Design an astable		
multivibrator using 555 timer IC to generate a symmetrical square wave of	9	L3 CO3 PO3
2 kHz with 50% duty cycle, assuming C = 0.1 μ F.		
UNIT - IV	18	
 4 a. With a neat sketch, explain the operation in Triangular / Rectangular wave generator circuit and write the expressions for; i) Peak to Peak amplitude of the Triangular wave ii) The time taken by the output to swing from -V_{ramp} to +V_{ramp} iii) Frequency of oscillation b. Sketch feedback network in RC phase shift oscillator and discuss its 	9	L2 CO2 PO2
significance. Design phase shift oscillator to have output frequency of 500 Hz. Use ± 12 V supply.	9	L2 CO3 PO3
 c. Explain the operation of adjustable output regulator and design this circuit for the following specifications: V_i = (18±3) V, V₀ = 9 V at I₀ = 10 to 50 mA; Zener Voltage, V_Z = 5.6 V and I_{Z(min)} = 5 mA. 	9	L2 CO3 PO3
UNIT - V	18	
5 a. Write an expression for the output voltage of inverted R/2R ladder D/A converter. Explain its operation and also mention the advantages of this DAC.	9	L2 CO2 PO2
b. With a neat diagram, waveform and analysis, explain the operation of dual slope, integrator ADC. Also mention its advantages and disadvantages.	9	L2 CO2 PO2
c. Explain the operation of basic PLL system with block diagram and waveforms.	9	L2 CO2 PO2

* * *