1101					· -
					. <u> </u>
4	P.E.S. College of Engineering, Mandya -)1		
	(An Autonomous Institution affiliated to VTU, Belag Third Semester, B.E Electronics and Communication		ering		
	Semester End Examination; March - 2021	8	8		
Timo	: 3 hrs	λ	lar M	arks: 1	00
11110	Course Outcomes	17.	<i>a. m</i>	<i>uns.</i> 1	00
	tudents will be able to:	<i>.</i> .	<i>с</i> 1 ·	•••	
COI	Ability to apply the knowledge of mathematics and science to understand the operformance parameters.	operation	of logic	circuits	s an
	Ability to apply the simplification techniques/methods to optimize and implement	-	l functio	ons/circı	ıits.
	Ability to analyze the given logic circuit based on the knowledge of digital eleme Ability to design a combinational and sequential logic circuit for the given requi		ecificat	ions.	
	Ability to understand and design the State machines with state graphs for sequen	tial design	•		
	I) PART - A is compulsory. Two marks for each question. II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 n	narks from	each u	nit.	
Q. No.	Questions	Marks		COs	PO
-	I:PART - A	10			
I a.	List the two bit maxterms.	2	L3	CO1	PC
b.	Assuming ideal conditions design a D-flip flop using multiplexer.	2	L3	CO4	PO
c.	Draw the schematic of a gated SR latch.	2	L2	CO4	P
d.	Compute the maximum number of flip-flops required to count	2	L3	CO5	D
	five events.	2	LJ	COJ	Г
e.	Draw the schematic of a general Mealy machine.	2	L2	CO3	PO
	II : PART - B	90			
	UNIT - I	18			
1 a.	Simplify the expression using <i>K</i> -map;				
	i) $f(A, B, C, D) = \Sigma m(0, 2, 4, 6, 9, 11, 13, 15)$	9	L3	CO2	PO
	ii) $(a,b,c,d) = a\overline{b} + cd + ac + b\overline{c}$				
b.	Simplify the following Boolean expression using Quine-McCluskey	9	L3	CO2	D
	method: $f(P, Q, R, S) = \Sigma m(1, 6, 8, 9, 10, 11, 14) + \Sigma d(7, 13)$	9	LJ	02	10
c.	Simplify the following expression using VEM technique:				
	i) $f(A, B, C, D) = \Sigma m(0, 2, 4, 5, 7, 9, 11, 13)$	9	L3	CO2	PO
	ii) $f(A, B, C) = \prod m(0, 3, 5, 6, 7)$				
	UNIT - II	18			
2 a.	Design a combinational circuit to add 2-bit gray code number	9	L4	CO4	Ρſ
	A and B.	フ	LH	04	1.0
b.	Design and implement 2-bit binary to gray code converter, using	9	L4	CO4	Ρſ
	optimum configuration multiplexers.	,	LT	0.04	1(
	Contd 2				

P18EC33							Page No 2				
c.	Illustrate the conce	ept of	combinational	logic implementatio	n using	9	L4	CO4			
	ROM and PLA.					9	L4	04	F05		
			18								
3 a.	With required transition table and characteristic equation, analyze the					9	L2	CO3			
	operation of SR flip flop.					9	LZ	005	PO2		
b.	With required timin	around									
	condition in JK flip flop, while illustrating / highlighting the						L3	CO3	PO2		
	possible solutions.										
c.	Convert; i) D flip flop to JK flip flop and ii) T flip flop to D flip flop						L3	CO3	PO2		
			18								
4 a.	Design a sequential	l logic	c circuit to gen	t to generate sequence 2 - 4 - 2 -> 1			T 4	004	DO 1		
	assuming appropriate		9	L4	CO4	POI					
b.	Design a sequential	Design a sequential logic circuit to generate all the possible factors of					. .	G A A	DOI		
	factorial 8 (8!).						L4	CO4	PO1		
c.	Design an arithmetic										
	the arithmetic operations as listed in Table. 4. c, draw the logic diagram.										
	S_1	S_{O}	$C_{in} = 0$	$C_{in} = 1$							
		1	F = A	F = A + 1							
	0	0	F = A + B	F = A + B + 1		9	L4	CO4	PO1		
	1	0	$F = A + \overline{B}$	$F = A + \overline{B} + 1$							
	0	1	F = A - 1	F = A							
			Table 4.c								
	UNIT - V										
5 a.	For the logic diagram	m give	en in Fig. 5(a),								
	i) Write the excitation	ion tab	le and derive the	e output equations							
	ii) Write the next sta	tate eq	uations								
	iii) Construct / write transition table										
	iv) Draw the state d	0	. .	a a a	DOI						
			9	L4	CO5	PO1					
	B		P2 01 B								
		- P	Or B	Fig. 5(a)							
b.	Design a logic circui	iit to de	etect the sequence	e 1101(Use D flip flo	ps).	9	L4	CO5	PO1		
c.	Discuss the concept	ts of N	Moore and Meal	y machines while acc	counting	0	1.0	<u> </u>	DOI		
	the instances of their		9	L3	CO5	POI					
				* * *							