\square

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)

Third Semester, B.E. - Electronics and Communication Engineering
 Semester End Examination; March - 2021
 Network Analysis and Synthesis

Time: 3 hrs
Max. Marks: 100

Course Outcomes

The Students will be able to:
CO1: Ability to apply the fundamental concepts in solving and analyzing different Electrical networks.
CO2: Ability to solve circuits using appropriate technique.
CO3: Ability to apply mathematics in analyzing and synthesizing the networks in time and frequency domain.
CO4: Ability to analyze the performance of a particular network.
CO5: Ability to formulate various synthesis methods for different one-port networks.
Note: I) PART - A is compulsory. Two marks for each question.
II) PART - B: Answer any Two sub questions (from a, b, c) for Maximum of $\mathbf{1 8}$ marks from each unit.

Q. No.	$\begin{gathered} \text { Questions } \\ \text { I : PART - A } \end{gathered}$	Marks 10	BLs	COs	POs
I a.	State superposition theorem applied to AC circuits.	2	L1	CO1	PO1
b.	Define quality factor and bandwidth of a series RLC circuits.	2	L1	CO1	PO1
c.	State initial value theorem.	2	L1	CO1	PO1
d.	Define two port network with an example.	2	L1	CO1	PO1
e.	Mention the properties of realization of RC functions.	2	L1	CO1	PO1
	II : PART - B	90			
	UNIT - I	18			
1 a. Find an equivalent resistance at terminals $A B$ in Fig. 1(a).					
$9 \quad \mathrm{~L} 3 \mathrm{CO} 2 \mathrm{PO} 2$					

b. Find the source voltage V_{x} in the Fig. 1(b), using KVL method, if current through the impedance $(3+j 4) \Omega$ is zero.

$9 \quad \mathrm{~L} 3 \mathrm{CO} 2 \mathrm{PO} 2$

Contd.... 2
c. Determine all the nodal voltages in the Fig.1(c) shown, using KCL.

9
L4 CO2 PO2

18

L2 CO2 PO1

L2 CO2 PO2

9
L3 CO2 PO2

L2 CO3 PO2
c. A triangular wave is applied input to series RL circuit with $R=2 \Omega, L=2 \mathrm{H}$ as shown in Fig. 3(c). Calculate the current $i(+)$ through the circuit.

9
L2
CO3 PO2

18
UNIT - IV
4 a. Determine $A B C D$ parameters for the network shown in Fig. 4(a).

L4 CO4 PO2

L4 CO4 PO2

L3 CO4 PO3 of a passive network?

UNIT - V

5 a . Test whether,
$F(S)=\frac{2 S^{4}+7 S^{3}+11 S^{2}+12 S+4}{S^{4}+5 S^{3}+9 S^{2}+11 S+6}$ is positive real functions?
b. Realize / Synthesize Cauer second form of the LC driving point impedance function $Z(S)=\frac{\left(S^{2}+1\right)\left(S^{2}+16\right)}{S\left(S^{2}+4\right)}$.
c. Define Z parameters and Y parameters of the two port network. Derive Y parameters in terms of Z parameters. What is reciprocal and symmetry condition

L2 CO5 PO3

L2 CO5 PO3
c. Realize the foster first form of the RC impedance function 9 $Z(S)=\frac{(S+1)(S+3)(S+5)}{S(S+2)(S+4)(S+6)}$.

