Max. Marks: 100

P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Fifth Semester, B.E. - Electronics and Communication Engineering Semester End Examination; Feb. - 2021 **Digital CMOS VLSI Design**

CO3. CO4.	 To Analyze the CMOS inverter circuit and BiCMOS circuits. To Design combinational, sequential and Dynamic circuits based on CMOS inverters f To Discuss various issues related to clocking, I/O and protection in MOS and VLSI Fa Work in groups to model transistors and its circuits learning new tools. 	0	-	v	itions.				
<u>Note</u> : I) PART - A is compulsory. Two marks for each question. II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 marks from each unit.									
Q. No.	Questions	Marks	BLs	COs	POs				
	I : PART - A	10							
I a.	Define channel length modulation of <i>n</i> -channel MOSFET.	2	L2	CO1	PO1				
b.	Define power, delay product of CMOS logic gate.	2	L2	CO1	PO1				
с.	Write CMOS circuit for NOR3 gate.	2	L2	CO3	PO2				
d.	Define dynamic CMOS logic circuit.	2	L2	CO3	PO2				
e.	Write any two guidelines for avoiding Latch up.	2	L2	CO4	PO1				
	II : PART - B	90							
	UNIT - I	18							
1 a.	Derive the expression for threshold voltage V_T interms of V_{SB} and surface potential.	9	L3	CO1	PO1				
b.	Explain full scaling technique and its effect on device performance. Also calculate	9	L3	CO1	PO1				
	the drain current and power dissipation after scaling.								
с.	Calculate the threshold voltage V_{TO} at $V_{SB} = 0$ for a polysilicon gate <i>n</i> -channel MOS								
	transistor with the following parameters:								
	Substrate doping density $N_A = 10^{16} \text{ cm}^{-3}$	9	L4	CO1					
	Polysilicon gate doping density $N_D = 2 \times 10^{20} \text{ cm}^{-3}$	7	L4	COI	101				
	Gate oxide thickness $t_{ox} = 500 \text{ \AA}$ and oxide interface fixed charge density								
	$N_{ox} = 4 \times 10^{10} cm^{-2}, \ \eta_i = 1.45 \times 10^{10} cm^{-3}, \epsilon_{\rm SI} = 11.7 \epsilon_0, \epsilon_{ox} = 3.97 \epsilon_0.$								
	UNIT - II	18							
2 a.	Consider a CMOS inverter circuit with the following parameters.								
	$V_{IL} = 1.08 V, V_{DD} = 3.3 V, V_{TO,n} = 0.6 V, V_{TO,p} = -0.7 V, K_n = 200 \mu A / V^2,$								
	$K_p = 80 \mu A / V^2$	9	L3	CO1	PO1				
	Calculate the noise margins of the circuit. Notice that the CMOS inverters being								
	considered here has $K_r = 2.5$ and $V_{TO,n} \neq V_{To,P} $:								

Time: 3 hrs

Course Outcomes The Students will be able to:

CO1: To Apply the basic knowledge of Physics and mathematics to understand the MOS and derive different current equations of MOS circuits and delays of CMOS inverter circuits.

U.S.N

P18EC52			Pag	e No	2
b.	Analyze the oxide related capacitance of MOSFET with related equation and figure.	9	L3	CO1	PO1
c.	Discuss the calculation of interconnect delay using,				
	i) RC delay model	9	L3	CO1	PO2
	ii) Elmore's delay model				
	UNIT - III	18			
3 a.	Explain operation of CMOS transmission gates along with Bias condition and operating regions.	9	L2	CO3	PO2
b.	Design CMOS logic circuit for the function $Z = \overline{(D + E + A)(B + C)}$ and draw stick	9	L4	CO3	PO3
	diagram using Euler's path.				
c.	Briefly discuss NOR based CMOS SR Latch circuit.	9	L3	CO3	PO3
	UNIT - IV	18			
4 a.	Briefly explain cascaded domino CMOS logic circuit for high performance dynamic logic circuit.	9	L3	CO3	PO3
b.	Explain the concept of voltage Bootstrapping.	9	L3	CO3	PO3
c.	Analyze the charge storage and charge leakage phenomenon at a soft node in a CMOS network.	9	L3	CO3	PO3
	UNIT - V	18			
5 a.	Write the figures for the process flow for the fabrication of an $nMOSFET$ on p -type silicon.	9	L2	CO4	PO1
b.	Briefly explain BiCMOS inverter circuit with resistive base pull down.	9	L3	CO2	PO2
c.	Analyze the on-chip clock generation using ring oscillator also clock distribution using H-tree and three-level buffered network.	9	L3	CO4	PO1

* * *