U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Fifth Semester, B.E. - Electronics and Communication Engineering Semester End Examination; Feb. - 2021 DSP Processor and Applications

Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:

- CO1: Distinguish between the DSP Processor and general purpose processor.
- CO2: Analyze the architecture features of Digital signal processor using basic digital circuit knowledge.
- CO3: Develop programs for digital filters using DSP processor for various situations and demonstrate utility of DSP processor in various signal processing applications.
- CO4: Apply the logical and signal processing concepts to develop algorithms for DSP processor.
- CO5: Design the interface to connect specified memory and signal converters.

Note: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 marks from each unit.

Q. No.	Questions	Marks	BLs	COs	POs
	I: PART - A	10			
1 a.	If a sum of 256 products is to be computed using a pipelined MAC unit, and				
	if the MAC execution time of the unit is 100 nsec, what will be the total	2	L3	CO4	PO1
	time required to complete the operation?				
b.	Describe the operation of the following MPY instructions:				
	i) MPY 13, B	2	L4	CO3	PO4
	ii) MPY #01234, B				
c.	What values are represented by the 16 bit fixed point number $N = 4000$ h in	2	L3	CO4	PO1
	the Q15 and Q17 notations?	2	L3		
d.	Determine the timing parameters for a 16-bit data communication in a DSK	2	L4	CO4	PO1
	configured for a clock divisor of 6. The oscillator clock is at 12.288 MHz.	2			
e.	Draw the block diagram of a DSP system.	2	L2	CO1	PO1
	90				
	UNIT -I	18			
1 a.	Explain circular and bit reversed addressing modes.	9	L3	CO4	PO1
b.	With neat diagram, explain accumulator guard bits and saturation logic.	9	L2	CO2	PO2
c.	List all the basic feature for implementing;				
	$y(n) = \sum_{i=0}^{N-1} h(i) x(n-i)$ $n = 0, 1, 2$ in the DSP architecture.	9	L3	CO2	PO2
	UNIT - II	18			
2 a.	With neat block diagram, explain barall shifter of the TMS320C54XX	9	L2	CO2	PO2
	processor.		L2	CO2	102

P18E	CC552		Page	e No 2
b.	With neat diagram, explain the circular addressing mode for	9	L2	CO2 PO2
c.	TMS320C54XX processor. Draw the memory map for TMS320C54XX processor and explain processor bits for configuring the on chip memories.	9	L3	CO2 PO2
	UNIT - III	18		
3 a.	Explain how the FIR filter algorithm can be implemented using TMS320C54XX processor?	9	L4	CO4 PO1
b.	What is PID controller? Explain its operation. With neat diagram, explain PID control implementation.	9	L4	CO4 PO1
c.	Draw the signal flow graph of 2-point, 4-point and 8-point DFT. And also explain general butterfly computation structure.	9	L2	CO2 PO2
	UNIT - IV	18		
4 a.	With a neat diagram, explain the CODEC interface unit.	9	L5	CO5 PO3
b.	Draw and explain flowchart of interrupt handling by the processor.	9	L5	CO5 PO3
c.	Design a data memory system with address range 000800h-000FFFh for a C5416 processor use 2k×8 SRAM memory chip.			CO5 PO3
	UNIT - V	18		
5 a.	Draw and explain a DSP based biotelemetry receiver implementation.	9	L4	CO ₃ PO ₄
b.	With neat diagram, explain a schematic diagram of the human vocal apparatus.	9	L4	CO3 PO4
c.	Draw the block diagram for hard disk drive servo control system. Explain it in detail.	9	L4	CO3 PO4