\square

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)
Third Semester, B.E. - Electrical and Electronics Engineering Semester End Examination; March - 2021

Electric Circuit Analysis

Time: 3 hrs
Max. Marks: 100

Course Outcomes

The Students will be able to:
CO1: To solve problems on electrical network using different techniques and theorems, resonance concepts.
CO2: To obtain graphical solution to electrical networks using Network Topology.
CO3: Analyze the network under transient condition due to switching.
CO4: Analyze and obtain the time domain response of R, L, C circuits for all types of excitations using Laplace transforms.
CO5: Represent the two port networks by Z,Y, ABCD and Parameters and Assessment of stability of network from network function.
Note: I) PART - A is compulsory. Two marks for each question.
II) PART - B: Answer any Two sub questions (from a, b, c) for Maximum of $\mathbf{1 8}$ marks from each unit.
Q. No.

Questions

I: PART - A
Marks BLs COs POs 10

1 a. Replace the given network with a single voltage source and resistor between terminals A and B.

b. What are the conditions for series resonance?
c. Find inverse Laplace transform of the function $F(s)=\frac{s^{2}-3 s+4}{s^{3}}$.
d. Find driving point admittance function of the following network shown in Fig. (1d).

e. Define two port networks and give the classification of two port network parameters.

II: PART - B

UNIT - I
1 a. Find an equivalent resistance between A and B of the networks shown in Fig. 1(a).

b. Find Currents I_{1}, I_{2}, I_{3} and I_{4} for the network shown in Fig. (1.b).

c. Find the current through 9Ω resistor using Thevenin's theorem for the circuit shown in Fig. (1.c).

2 a. Derive an expression for resonant frequency and current at resource for the network shown in Fig. (2.a).

b. A series RLC circuit has a resistance of 10Ω, an inductance of 0.3 H and a capacitance of $100 \mu \mathrm{~F}$. The applied voltage is 230 V . Find;
i) The resonant frequency
ii) The quality factor
iii) Lower and upper cut off frequencies
iv) Bandwidth
v) Current at resonance
vi) Currents at f_{1} and f_{2}
vii) Voltage across inductance at resonance
c. A series RL circuit consists of a resistance of 5Ω and inductance of 0.02 H is connected across the voltage $V=(100+50 \sin 500 t+25 \sin 1500 t) V$. Find;
i) Current
ii) Average power
iii) Power factor

Also write the expression for the current in the circuit.

UNIT - III

3 a. For the network shown in Fig. (3.a) the switch is changed from position (1) to (2) at $t=0$ steady state having reached before switching. Find the value of $i, \frac{d i}{d t}, \frac{d^{2} i}{d t^{2}}$ at $t=0^{+}$.

b. In the network shown in Fig. (3.b) a steady state is reached with the switch ' K ' open. At $t=0$, the switch is closed. For the elemental values given. Determine the value of $V_{a}\left(O^{-}\right), V_{a}\left(O^{+}\right)$and $V_{b}\left(O^{+}\right)$.

c. Write the equation for the waveforms shown in Fig. (3.c) and find its Laplace transform.

UNIT - IV
4 a . A balanced star connected load of 150 kW having an impedance of $6.351 \angle 38.06 \Omega$ is connected to a $3 \phi, 4$ wire, 1100 V RYB system. Find the line currents, circuit constants of the load per phase and also draw the vector diagram.
b. Currents I_{1} and I_{2} entering at port 1 and port 2 respectively of a two port networks are given by the following equations:
$I_{1}=0.5 V_{1}-0.2 V_{2} \quad I_{2}=-0.2 V_{1}+V_{2}$
Find Y, Z and $A B C D$ parameters for the network.
c. Obtain the following:
i) z-parameter in terms of y-parameters
ii) h-parameters in terms of z-parameters

UNIT - V
5 a . Find the driving point admittance for the network shown in Fig. (5.a).

b. Find the impulse response of the voltage across the capacitor in the network shown in fig. 5b, also determine response $V_{c}(t)$ for step input.

