P18EE33 Page No... 1

U.S.N

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Third Semester, B.E. - Electrical and Electronics Engineering Semester End Examination; March - 2021 **Analog Electronics Circuit**

Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:

- CO1: Analyze and design Diode and Transistor circuit such as Clippers, Clampers, Voltage Multipliers and Amplifiers.
- CO2: Analyze and design two port hybrid equivalent model for BJT amplifier and Various BJT Oscillator Circuits.
- CO3: Analyze the effect of negative feedback in transistor amplifier.
- CO4: Analyze and design various Power amplifier circuits and study the effect of distortions on Power amplifier.
- CO5: Analysis of J-FET and MOSFET Circuit.

Note: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any \underline{Two} sub questions (from a, b, c) for Maximum of 18 marks from each unit.									
Q. No.	Questions		BLs	COs	POs				
	I : PART - A	10							
I a.	Write the circuit diagram of a voltage multiplier circuit. Write input-	2	L1	CO1	PO1				
	output waveform.	2	Li	COI	101				
b.	State the Barkhansen criteria for sustained oscillation in oscillators.	2	L2	CO2	PO2				
c.	Calculate the gain of a negative feedback amplifier having $A = -2000$,	2	L3	CO3	PO1				
	if the feedback factor is 20%.								
d.	A class A series fed power amplifier is required to deliver a maximum	2	L3	CO4	PO4				
	power of 20 W to a load of 4 Ω . Calculate the required supply voltage.	2	L3	CO4	104				
e.	Write any two differences between JFET and MOSFET.	2	L2	CO5	PO2				
	II : PART - B	90							
	UNIT - I	18							
1 a.	How clamping circuit differs from clippers circuit? With neat circuit	9	L1	CO1	PO1				
	diagram, explain negative clamper circuit.		Li	COI	101				
b.	For the voltage divider bias circuit, find the base current \mathcal{I}_B , collector								
	current I_C , collector to emitter voltage V_{CB} for CE configuration also								
	determine V_B , V_C , V_E .	9	L3	CO1	PO3				
	Given: $R_1 = 62 \text{ k}\Omega$, $R_2 = 9.1 \text{ k}\Omega$, $R_c = 3.9 \text{ k}\Omega$, $R_e = 680 \Omega$, $\beta = 80$,								
	$Vcc = 16V, \ V_{BE} = 0.7 \ V.$								
c.	i) For the Zener regulator shown in Fig.1(c), determine V_L , I_Z , P_Z , for								
	$R_L = 1.2 \text{ k}\Omega.$								
	+ 1 1 1 1 1								

ii) Explain various distortions of the amplifier.

CO₁ PO₄

P18EE33			Page No 2			
	UNIT - II	18				
2 a.	Derive the expression for H-parameters in a hybrid model of a transistor.	9	L1	CO2	PO2	
b.	With circuit diagram, explain Hartley oscillator and write the condition for frequency of oscillation and also find the values of tank circuit elements for a transistor with $h_{fe} = 40$ and frequency of oscillation 100 kHz.	9	L3	CO2	PO3	
c.	For CE amplifier configuration hybrid model derive an expression,					
	i) Current gain					
	ii) Input impedance	9	L4	CO2	PO2	
	iii) Voltage gain					
	iv) Output impedance					
_	UNIT - III	18				
3 a.	Explain the effect of negative feedback on output resistance of a voltage series feedback amplifier.	9	L4	CO3	PO4	
b.	Derive the expression for input resistance of current series and current	9	L4	CO3	PO2	
	shunt feedback amplifier.					
c.	i) List the characteristics of negative feedback amplifier.					
	ii) A voltage amplifier has the following parameters value without					
	feedback:	9	L3	CO3	PO2	
	$A_V = -1000$, $R_i = 20 \text{ k}\Omega$, $R_o = 15 \text{ k}\Omega$, bandwidth = 200 kHz compute					
	there parameter values, if negative series feedback					
	with $\beta = -0.1$ is given. UNIT - IV	18				
4 a.	Classify and explain power amplifier in detail.	9	L2	CO4	DO2	
4 a. b.	For a class B push-pull power amplifier with $Vcc = 25$ V driving an 8 Ω	9	L2	CO4	FO2	
0.	load. Find;					
	i) Maximum input power					
	ii) Maximum output power	9	L3	CO4	PO3	
	iii) Maximum circuit efficiency					
	iv) Maximum collector dissipation					
c.	With circuit diagram, explain transformer coupled class A power					
	amplifier? Write AC and DC analysis expressions also state its	9	L4	CO4	PO1	
	advantages and disadvantages.					

UNIT - V

18

9

L3

CO₅ PO₃

- 5 a. Explain the construction and characteristics of E-MOSFET.
- 9 L2 CO5 PO1
- b. Write the circuit of JFET common source amplifier using voltage divider configuration and explain AC equivalent circuit.
 - i) Draw the small signal model

- 9 L4 CO5 PO2
- ii) Find input impedance and output impedance when effect of r_d is included and neglected
- c. For the JFET amplifier shown in Fig.5(c),
 - i) Calculate Z_i and Z_o
 - ii) Calculate A_{ν}
 - iii) Find V_o if $V_i = 25 \text{ mV(rms)}$

* * *