\square

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi) Third Semester, B.E. - Electrical and Electronics Engineering Semester End Examination; March - 2021 Analog Electronics Circuit
Time: 3 hrs
Max. Marks: 100

Course Outcomes

The Students will be able to:
CO1: Analyze and design Diode and Transistor circuit such as Clippers, Clampers, Voltage Multipliers and Amplifiers.
CO2: Analyze and design two port hybrid equivalent model for BJT amplifier and Various BJT Oscillator Circuits.
CO3: Analyze the effect of negative feedback in transistor amplifier.
CO4: Analyze and design various Power amplifier circuits and study the effect of distortions on Power amplifier.
CO5: Analysis of J-FET and MOSFET Circuit.
Note: I) PART - A is compulsory. Two marks for each question.
II) PART - B: Answer any Two sub questions (from a, b, c) for Maximum of $\mathbf{1 8}$ marks from each unit.

Questions
I : PART - A
I a. Write the circuit diagram of a voltage multiplier circuit. Write inputoutput waveform.
b. State the Barkhansen criteria for sustained oscillation in oscillators.
c. Calculate the gain of a negative feedback amplifier having $A=-2000$, if the feedback factor is 20%.
d. A class A series fed power amplifier is required to deliver a maximum power of 20 W to a load of 4Ω. Calculate the required supply voltage.
e. Write any two differences between JFET and MOSFET.

II : PART - B

UNIT - I
90

1 a. How clamping circuit differs from clippers circuit? With neat circuit diagram, explain negative clamper circuit.
b. For the voltage divider bias circuit, find the base current I_{B}, collector current I_{C}, collector to emitter voltage $V_{C B}$ for CE configuration also determine V_{B}, V_{C}, V_{E}.

Given : $R_{l}=62 \mathrm{k} \Omega, R_{2}=9.1 \mathrm{k} \Omega, R_{c}=3.9 \mathrm{k} \Omega, R_{e}=680 \Omega, \beta=80$, $V c c=16 \mathrm{~V}, V_{B E}=0.7 \mathrm{~V}$.
c. i) For the Zener regulator shown in Fig.1(c), determine V_{L}, I_{Z}, P_{Z}, for $R_{L}=1.2 \mathrm{k} \Omega$.

tige Q1. (c)
ii) Explain various distortions of the amplifier.

UNIT - II

2 a. Derive the expression for H-parameters in a hybrid model of a transistor.
b. With circuit diagram, explain Hartley oscillator and write the condition for frequency of oscillation and also find the values of tank circuit elements for a transistor with $h_{f e}=40$ and frequency of oscillation 100 kHz .
c. For CE amplifier configuration hybrid model derive an expression,
i) Current gain
ii) Input impedance
iii) Voltage gain
iv) Output impedance

UNIT - III

3 a. Explain the effect of negative feedback on output resistance of a voltage series feedback amplifier.
b. Derive the expression for input resistance of current series and current shunt feedback amplifier.
c. i) List the characteristics of negative feedback amplifier.
ii) A voltage amplifier has the following parameters value without feedback:
$A_{V}=-1000, R_{i}=20 \mathrm{k} \Omega, R_{o}=15 \mathrm{k} \Omega$, bandwidth $=200 \mathrm{kHz}$ compute there parameter values, if negative series feedback with $\beta=-0.1$ is given.

UNIT - IV

4 a . Classify and explain power amplifier in detail.
b. For a class B push-pull power amplifier with $V c c=25 \mathrm{~V}$ driving an 8Ω load. Find;
i) Maximum input power
ii) Maximum output power
iii) Maximum circuit efficiency
iv) Maximum collector dissipation
c. With circuit diagram, explain transformer coupled class A power amplifier? Write $A C$ and $D C$ analysis expressions also state its advantages and disadvantages.

18

$9 \quad \mathrm{~L} 1 \quad \mathrm{CO} 2 \quad \mathrm{PO} 2$
$9 \quad \mathrm{~L} 3 \quad \mathrm{CO} 2 \mathrm{PO} 3$
$9 \quad \mathrm{~L} 4 \quad \mathrm{CO} 2 \quad \mathrm{PO} 2$

18
$9 \quad \mathrm{~L} 4 \quad \mathrm{CO} 3 \quad \mathrm{PO} 4$
$9 \quad \mathrm{~L} 4 \quad \mathrm{CO} 3 \quad \mathrm{PO} 2$
$9 \quad \mathrm{~L} 3 \quad \mathrm{CO} 3 \quad \mathrm{PO} 2$

18
$9 \quad \mathrm{~L} 2 \quad \mathrm{CO} 4 \quad \mathrm{PO} 2$
$9 \quad \mathrm{~L} 3 \quad \mathrm{CO} 4 \quad \mathrm{PO} 3$

9
L4 CO4 PO1

UNIT - V
5 a . Explain the construction and characteristics of E-MOSFET.
b. Write the circuit of JFET common source amplifier using voltage divider configuration and explain AC equivalent circuit.
i) Draw the small signal model
ii) Find input impedance and output impedance when effect of r_{d} is included and neglected
c. For the JFET amplifier shown in Fig.5(c),
i) Calculate Z_{i} and Z_{o}
ii) Calculate A_{v}
iii) Find V_{o} if $V_{i}=25 \mathrm{mV}(\mathrm{rms})$

