U.S.N

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Third Semester, B.E. - Electrical and Electronics Engineering Semester End Examination; March - 2021 **Digital Electronics Circuits**

Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:

- CO1: To analyze the different switching algebra theorems and apply them for logic functions.
- CO2: Explain and analyze the Karnaugh map for a few variables & combinational circuits: half adders / subtractors, encoders / decoders.
- CO3: Explain and analyze the bistable element and the different latches and flip flops.
- CO4: Explain and analyze sequential circuits, like counters and shift registers.
- CO5: Explain and analyze the concepts of A/D and D/A converters.

Note: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 marks from each unit.						
Q. No.	Questions	Marks	BLs	COs	POs	
-	I: PART - A	10				
I a.	What is the difference between latch and flip flop?	2				
b.	State the DeMorgan theorem.	2				
c.	Write difference between Multiplexer and Demultiplexer.	2				
d.	Write the diagram for flash type ADC.	2				
e.	What is a Counter? Mention different types of Counters.	2				
	II : PART - B	90				
	UNIT - I	18				
1 a.	i) Convert the given expression in standard SOP from;					
	f(A, B, C) = AC + AB + BC	0				
	ii) Convert the given expression in standard POS form;	9				
	Y = A.(A + B + C)					
b.	Expand $f_1 = a + ab + a\overline{c}d$ into minterms and $f_2 = a(b+c)(a+c+\overline{d})$	9				
	into maxterms.					
c.	Staircase light is controlled by two switches; one is at the top of the					
	stairs and other at the bottom of the stair.					
	i) Write the truth table for the system	9				
	ii) Write the logic equations in SOP form	9				
	iii) Realize the circuit using basic gates					
	iv) Realize the circuit using minimum number of NAND gates					
	UNIT - II	18				
2 a.	Minimize the expression using Quine Mccluskey method;	9				
	$Y = \overline{A}B\overline{C}\overline{D} + \overline{A}B\overline{C}D + AB\overline{C}\overline{D} + AB\overline{C}D + A\overline{B}\overline{C}D + \overline{A}\overline{B}C\overline{D}$					

b.	Write the k-map for the Boolean function and minimize the	
	expression;	9
	i) $f(w, x, y, z) = \sum m(2, 9, 10, 11, 13, 14, 15) + d(3, 4, 5)$	
	ii) $F(A, B, C, D) = \prod M(1, 2, 3, 5, 9, 10, 12, 13)$	
c.	Explain the implementation of full adder with block diagram and	9
	truth table.	
	UNIT - III	18
3 a.	Explain 4-bit priority encoder with truth table and k-map	9
	simplification also implement using logic diagram.	7
b.	Construct full subtractor using Demultiplexer (1:8) with truth table	9
	and implementation.	9
c.	Compare;	
	i) Combinational and Sequential logic circuit	9
	ii) Synchronous and Asynchronous sequential circuit	
	UNIT - IV	18
4 a.	Explain Moore model and Mealy model using JK flip flop.	9
b.	A sequential circuit with 2 D flip flops A and B and input X and	
	output <i>Y</i> is specified by the following next state and output equation:	
	$A(t+1) = AX + BX \qquad B(t+1) = A'X \qquad Y = (A+B)X'$	
	i) Draw the logic diagram of the circuit	9
	ii) Derive the state table	
	iii) Derive the state diagram	
0	Explain 3-bit synchronous binary counter with timing diagram	
c.	and state sequence.	9
	UNIT - V	18
5 a.	Explain ramp type DAC with neat block diagram for voltage to	10
s a.	time conversion.	9
h		
b.	With the help of a neat diagram, explain the working of R-2R	9
	ladder network.	
c.	What are different parameters on which A/D and D/A conversion	9
	techniques are based?	