U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)
Third Semester, B.E. - Electrical and Electronics Engineering
Semester End Examination; March - 2021

Measurement and Instrumentation

Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:

- CO1: Understand various units and dimensions associated with Electrical Quantities.
- CO2: Apply fundamental knowledge of instruments/bridges characteristics for solving engineering problems.
- CO3: Understand different types of standards; methods of calibration used in measurements and statistical and regression analysis.
- CO4: Understand the principle of operation and working of different electronic instruments.
- CO5: Apply the knowledge of different oscilloscopes like CRO, DSO for various applications.

<u>Note</u>: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 marks from each unit.

Q. No.	Questions	Marks	BLs COs POs
	I: PART - A	10	
I a.	List the sources of errors in energy meters.	2	
b.	What range of resistance can be measured by Kelvin's double bridge to determine the unknown?	2	
c.	Why the secondary of CT should not be the open circuited?	2	
d.	Mention the two major advantages of digital multimeter.	2	
e.	Write the principle of LED display.	2	
	II: PART - B	90	
	UNIT - I	18	
1 a.	Write a note on classification of Ammeters and Voltmeters. Derive an		
	expression for defecting torque (T_d) of permanent magnet moving coil	9	
	instrument.		
b.	What are the different adjustments in energy meter? Explain experimental procedure for the adjustment.	9	
c.	Mention the errors in Dynameters type wattmeter. The voltage coil of a		
	dynamometer wattmeter has on inductive reactance which is 0.5% of its		
	resistance at normal frequency. Find the correction factor when the load	9	
	pf is;	9	
	i) 0.8 lagging		
	ii) 0.5 lagging		

P18EE36			Page No 2
	UNIT - II	18	

•		
2 a.	What are the limitations of Wheatstone bridge? The four arms of the	
	Wheatstone bridge have the following resistance:	
	$AB = 1000 \ \Omega$, $BC = 1000 \ \Omega$, $CD = 120 \ \Omega$, $DA = 120 \ \Omega$. The bridge is	
	used for strain measurement and supplied from 5 V ideal battery.	9
	The galvanometer has a sensitivity of 1 mm/ μA with internal resistance	
	of 200 Ω . Determine the deflection of the galvanometer, if arm	
	<i>DA</i> increases to 121 Ω and arm <i>CD</i> decreases to 119 Ω .	
b.	How shering bridge is used for the measurement of unknown capacitor?	0
	Derives its balance equation.	9
c.	Write a short note on source and detectors for AC bridges.	9
	UNIT - III	18
3 a.	Describe the general requirements of shunts and multipliers. Derive the	9
	expression to calculate shunt resistance and multiplier resistance.	9
b.	A 100/5 current transformer of its rates load of 25 VA has an iron loss of	
	0.2 W and a magnetising current of 1.5 A. Calculate its ratio error phase	0
	angle when supplying rated output to a meter having a ratio of resistance	9
	to reactance of 5.	
c.	Explain the contraction of current transfer and potential transformer.	9
	UNIT - IV	18
4 a.	Explain the working of Digital multimeter with relevant diagrams.	9
b.	What is an LVDT? Where it is used? Explain its operating principle.	9
c.	What are different most important strain gauges? Explain them briefly.	9
	UNIT - V	18
5 a.	Explain the front panel details of a typical dual trace oscilloscope.	9
b.	With a neat diagram, explain the working of digital storage oscilloscope.	9
c.	Write short notes on the following:	
	i) X-Y recorders	9
	ii) Use of Lissajous patterns	

* * *