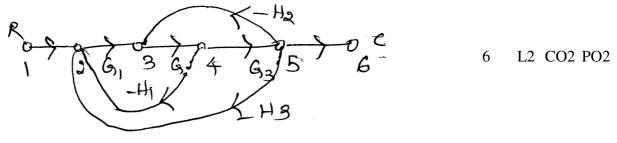

	E53	P	age l	No 1		
	U.S.N					
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Fifth Semester, B.E Electrical and Electronics Engineering Semester End Examination; Feb 2021 Linear Control Systems Time: 3 hrs Max. Marks: 100						
	Course Outcomes					
 CO1: Do the linear modeling (Transfer Function) for Electrical, Mechanical & Electromechanical systems with the analogy. CO2: Do the analysis of the second order system with the transient & steady state performance specification & its importance. CO3: Do the stability analysis of different systems with RH criterion & Root locus technique. CO4: Do the frequency response analysis using analytical & Bode diagram. CO5: Do the relative stability analysis using Polar & Nyquist diagrams. Note: I) PART - A is compulsory. Two marks for each question. 						
Q. No.	<i>II) PART - B: Answer any</i> <u><i>Two</i></u> <i>sub questions (from a, b, c) for Maximum of</i> 18 marks <i>from each unit.</i> Questions Marks BLs COs PO					
•	I : PART - A	10				
4						
1 a.	What is a mathematical model? What are the different types?	2	L1	CO1 PO		
	Define settling time.	2 2		CO1 PO CO2 PO		
	Define settling time.		L1			
b.	Define settling time. What are poles and zeros of a system?	2	L1 L1	CO2 PO		
b. c. d.	Define settling time. What are poles and zeros of a system?	2 2	L1 L1 L1	CO2 PO CO3 PO		
b. c. d.	Define settling time. What are poles and zeros of a system? What is a polar plot?	2 2 2	L1 L1 L1	CO2 PO CO3 PO CO3 PO		
b. c. d.	Define settling time. What are poles and zeros of a system? What is a polar plot? What is state variable?	2 2 2 2	L1 L1 L1	CO2 PO CO3 PO CO3 PO		

L2 CO1 PO2

b. i) Obtain the T.F. of the mechanical system shown in figure below,

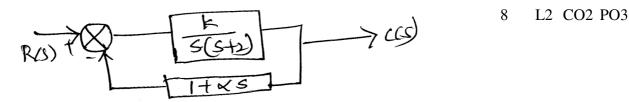

Contd...2

P18EE53

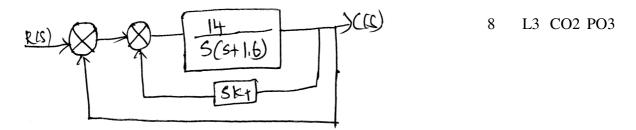
ii) Find the transfer function $E_O(s)/E_i(s)$ of the network shown below,

$$ee(t)$$
 $i(t)$ $i(t)$

c. Find C/R of the following signal flow graph using Mason's gain formula,



UNIT - II


18

L1 CO2 PO2

2 a. i) Give the expression for maximum peak overshoot for a second order system.
6
ii) Determine the value of *K* and *α* such that the system has a damping ratio of 0.7 and an un-dumped natural frequency of 4 rad/s for the system shown in figure below,

- b. i) Give the expression for rise time of the step response for a second order system. 6 L1 CO2 PO2
 - ii) The system shown in figure below used a rate feedback controller. Determine tachometer constant K_t so as to obtain the damping ratio as 0.5. Calculate corresponding ω_d , t_p , t_s and M_p .

c. For the control system shown below, what is the value of *K* for the system to be critically damped?

$$\frac{1}{R(s)} \xrightarrow{k} \xrightarrow{2} \xrightarrow{(Cs)} 4 L2 CO2 PO2$$

Contd...3

P18EE53	Pe	age No 3
UNIT - III		
3 a. i) What are poles and zeros of a system?	4	L1 CO3 PO2
ii) Use Routh's criterion to determine the number of roots of the following	_	
equation which lie in the RHS of S plane. $s^6 + s^5 + 2s^4 + s^3 + 2s^2 + 5s + 6 = 0$.	5	L2 CO3 PO2
b. Sketch the root locus of a feedback system whose open loop T.F. is given by,		
$G(S)H(S) = \frac{K}{S(S+2)(S+3)}.$	9	L3 CO3 PO3
$S(S)H(S) = S(S+2)(S+3)^2$		
c. Sketch the root locus for a unity feedback system with open loop T.F.		
$G(S) = \frac{K}{S(S^2 + 8S + 32)}.$	9	L3 CO3 PO3
$S(S^2 + 8S + 32)$		
UNIT - IV	18	
4 a. i) List the advantages of frequency response as compared to time domain	5	L2 CO4 PO4
response.	5	L2 C04 104
ii) Determine the T.F. of a system whose asymptotic gain plot is given below,		
1 w=1000		
with the way way in	7	
oab at los		L3 CO4 PO3
- 2000 lise		
odb -20db/sec -20db/sec		
1	4	
 b. i) Define Bandwidth, Resonant peak and Resonant frequency. ii) Drew Bade relat and discuss stability. 	4	L1 CO4 PO1
ii) Draw Bode plot and discuss stability $G(S) W(S) = M(S)$	8	L3 CO4 PO3
$G(S)H(S) = \frac{80}{S(S+2)(S+80)}.$		
c. The closed loop T.F. of a feedback system is given by,		
$T(S) = \frac{1000}{(S+22.5)(S^2+2.4S+44.4)}$	6	L3 CO4 PO3
$(S+22.5)(S^2+2.4S+44.4)$	0	25 004 105
Determine; i) M_r , ω_r ii) Bandwidth of the equivalent second order system.		
UNIT - V	18	
5 a. Explain the concept of Nyquist stability criterion with example.	9	L1 CO5 PO2
b. Define phase margin and gain margin from polar plot. Consider a system with		
open loop transfer function as $G(S)H(S) = \frac{10}{S}$. Obtain its polar plot.	9	L2 CO5 PO2
^{c.} For a certain control system $G(S)H(S) = \frac{K}{S(S+2)(S+10)}$ sketch the Nyquist		
S(S+2)(S+10)	9	L3 CO5 PO3
plot and hence calculate the range of values of K for stability.		

plot and hence calculate the range of values of K for stability.