P1	8EE54		Page	e No	. 1						
	U.S.N										
	P.E.S. College of Engineering, Mandya - 571 (An Autonomous Institution affiliated to VTU, Belagavi) Fifth Semester, B.E Electrical and Electronics Engine Semester End Examination; Feb 2021 Electrical Machines - II										
Tir	ne: 3 hrs	Max.	Mari	ks: 10)0						
Course Outcomes The Students will be able to: CO1: To know about basic operation and construction of different types of DC Generators. CO2: To know about basic operation and construction of different types of DC Motors. CO3: Analysis of various tests to be conducted on DC Machines. CO4: To study about voltage regulation of synchronous generators. CO5: To learn about principle of operation and the effect of load variation in synchronous motors. Note: I) PART - A is compulsory. Two marks for each question. II) PART - B: Answer any Two sub questions (from a, b, c) for Maximum of 18 marks from each unit.											
Q. No.	-	Marks	BLs	COs	POs						
	I: PART - A	10									
1 a.		2		C01							
b.	Explain the significance of back EMF in DC motors.	2		CO2							
c.	Mention the advantages of Hopkinson's test.	2		CO3							
d.	Define distribution factor of synchronous generator.	2		CO4							
e.	, , , , , , , , , , , , , , , , , , ,	2	L1	CO5	PO2						
	II : PART - B	90									
1 a.	ii) Derive the EMF equation of DC generator.	18 9	L1	CO1	PO2						
b.	i) Write a note on EMF commutation.ii) A 8 pole wave wound DC generator has 480 armature conductors. The armature current is 200 A. Find the armature reaction demagnetizing and cross magnetizing ampere turns per pole, if;	9	L2	CO1	PO2						
	I) Brushes are on Geometric Neutral Axis (GNA)II) Brushes are shifted 6° electrical from GNA		L3	CO1	PO2						
c.	With relevant diagram, explain armature reaction in DC generator.	9	L2	CO1	PO2						
	UNIT - II	18									
2 a. b.	of series and shunt DC motor.	9	L2	CO2	PO2						
	i) Flux control methodii) Applied voltage control	9	L2	CO2	PO2						

P18EE54							Pag	e No	. 2				
c. i) Why DC series motor is never started on No load?							2	L1	CO2	PO2			
	ii) A 230 V DC shunt motor runs at 800 rpm and takes armature current												
	of 50 A. Find resistance to be added to the field circuit to increase speed												
	from 800 rpm to 1000 rpm at an armature current of 80 A. Assume flux								ne flux	7	L1	CO2	PO2
	proportional to field current. Armature resistance = $0.15 \ \Omega$ and												
field resistance = 250Ω .													
	UNIT - III									18			
3 a.	Describe briefly the field test applied to two similar DC series motor.										L4	CO3	PO2
b.	The Swimburne's test on DC shunt motor gave the following results:												
	Line voltage = 500 V, takes 4 A on no load. The armature resistance including								cluding	9	12	CO3	DOJ
	that of brushes is 0.2 Ω and the field current is 1 A. Estimate the output and								put and	9	LJ	COS	FO2
	the efficiency, wh	nen the inp	ut curre	nt is, i)	20A? a	nd ii) 1	00 A?						
c.	Discuss in detail Hopkinson's test conducted on DC machine for pre									9	Ι <i>Λ</i>	CO3	PO2
	determination of efficiency as generator and motor.)	L4	005	102
	UNIT - IV												
4 a.	Discuss the comparison between the following in an alternator:												
	i) Salient pole and non-salient pole									9	L4	CO4	PO2
	ii) Full pitch and short pitch winding												
b.	Define voltage regulation and explain the synchronous impedance method to								thod to	9	L2	CO4	PO2
	determine regulation of an alternator for lag and lead pf.												
c.	. A 3.5 MVA, Y-connected alternator rated at 4160 V at 50 Hz has the OCC												
	given by the following data:												
	$I_f(\mathbf{A})$ 5	50 100	150	200	250	300	350	400	450				
	Voc inv (Line) 16	520 3150	4160	4750	5130	5370	5550	5650	5750	9	L3	CO4	PO2
	A field current of 200 A is found necessary to circulate I_{FL} on SC of alternator.												
	Calculate by; i) EMF method and ii) MMF method.												
	The voltage regulation at full load 0.8 pf lagging. Neglect resistance.												
	UNIT - V								18				
5 a.	Explain the opvariable excitation		f sync	chronou	s mot	or at	consta	nt loa	id and	9	L2	CO5	PO2
b.	Explain the slip test on salient pole synchronous machine with a neat circuit								circuit	9	12	CO5	PO2
	diagram and indicate how X_d and X_q can be determined from the load?									Į		005	102
c.	i) Explain the procedure of synchronization of 3 phase alternator.							9	L2	CO5	PO2		
	ii) V-curves and i	nverted V-	curves o	of synch	nronous	motor.				-		200	