	U.S.N			_						
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Third Semester, B.E Industrial and Production Engineering Semester End Examination; March - 2021 Mechanics of Materials Time: 3 hrs Max. Marks: 100										
	Course Outcomes									
	Students will be able to:									
	1: Explain the steps involved in casting processes. 2: Distinguish between various casting processes.									
CO2: Distinguish between various casting processes. CO3: Explain special types of welding processes.										
CO4: Analyze shear angle using Merchants circle diagram. Explain various types of cutting tool materials.										
CO5: Estimate Tool life and Describe Mechanism of machines.										
<u>Note</u> : I) PART - A is compulsory. Two marks for each question. II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 marks from each unit.										
. No.	Questions	Marks	BLs	COs	POs					
	I:PART - A	10								
I a.	Explain the different types of stresses.	2	L1	CO1	PO1					
b.	Explain coefficient of thermal expansion.	2	L1	CO2	PO1					
c.	With a neat sketch, explain the different types of loads on beams.	2	L3	CO3	PO1					
d.	Mention the assumptions made in pure bending or simple bending.	2	L1	CO4	PO1					
e.	Explain the relationship between actual crippling load and crushing load			00 F	501					
	by Euler's theory.	2	L1	CO5	PO1					
	II : PART - B	90								

1 a. A rigid bar *ACDB* is hinged at *A* and supported in a horizontal position by two identical steel wires as shown in Fig. 1(a). A vertical load of 30 kN is applied at *B*. Find the tensile forces T_1 and T_2 induced in these wires by the vertical load.

9 L3 CO1 PO2

b. The principal stresses at a point in a bar are 200 N/mm² (tensile) and 100 N/mm² (compressive). Determine the resultant stress in magnitude and direction on a plane inclined at 600 to the axis of the major 9 L3 CO1 PO2 principal stress. Also determine the maximum intensity of shear stress in the material at the point.

P18IP34

c. The bar shown in Fig. 1(c) is subjected to a tensile load of 160 kN. If the stress in the middle portion is limited to 150 N/mm², determine the diameter of the middle portion. Find also the length of the middle portion if the total elongation of the bar is to be 0.2 mm. Young's modulus = 2.1×10^5 N/mm².

UNIT - II

9 L3 CO1 PO2

- 2 a. Three bars made of copper, zinc and aluminum are of equal length and have cross section 500, 750 and 1000 square mm respectively. They are rigidly connected at their ends. If this compound member is subjected to a longitudinal pull of 250 kN, estimate the proportional of the load carried on each rod and the induced stresses. Take the value of *E* for copper = 1.3×10^5 N/mm², for Zinc = 1.0×10^5 N/mm² and for aluminum = 0.8×10^5 N/mm².
 - b. A steel tube of 30 mm external diameter and 25 mm internal diameter encloses a gun metal rod of 20 mm diameter to which it is rigidly joined at each end. The temperature of the whole assembly is raised to 140°C and the nuts on the rod are then screwed lightly home on the ends of the tube. Find the intensity of stress in the rod when the common temperature has fallen to 30°C. The value of *E* for steel and gun metal is 2.1×10^5 N/mm² and 1×10^5 N/mm² respectively. The linear coefficient for steel and gun metal is 12×10^{-6} /°C and 20×10^{-6} /°C.
 - c. An elemental cube is subjected to tensile stress of 30 N/mm² acting on two mutually perpendicular planes and a shear stress of 10 N/mm² on these planes. Draw the Mohr's circle of stress and determine the magnitudes and directions of principal stresses and also the greatest shear stress.

UNIT - III

3 a. A boiler shell is to be made of 15 mm thick plate having a limiting tensile stress of 120 N/mm². If the efficiencies of the longitudinal and circumferential joints are 70% and 30% respectively. Determine, the maximum permissible diameter of the shell for an internal pressure of 2 N/mm² and Permissible intensity of internal pressure when the shell diameter is 1.5 m.

18

9

9

L3 CO2 PO2

L3 CO2 PO2

L3 CO2 PO2

CO3

PO2

18

10

L3

9

Page No... 3

b. Draw SF and BM diagrams for the over-hanging beam carrying uniformly distributed load of 2 kN/m over the entire length and a point load of 2 kN as shown in Fig. 3(b). Locate the point of contra flexure.

Draw the sheer force and bending moment diagrams for a simply c. supported beam of length 8 m and carrying a uniformly distributed load of 10 kN/m for a distance of 4 m as shown in the Fig. 3(c).

UNIT - IV

18

A cast iron beam is of T-section as shown in Fig. 4(a). The beam is 4 a. simply supported on a span of 8 m. The beam carries a uniformly distributed load of 1.5 kN/m length on the entire span. Determine the maximum tensile and maximum compressive stresses.

The sheer force acting on a beam at an I-section with unequal flanges is b. 50 kN. The section is shown in Fig. 4(b). The moment of inertia of the section about N.A is 2.849 * 104. Calculate the shear stress at the N.A and also draw the shear stress distribution over the depth of the section.

10 L3 CO4 PO2

CO

PO₂

c.	Derive the relation between;				
	i) Bending Stress and Radius of Curvature	8	L2	CO4	PO1
	ii) Bending Moment and Radius of Curvature				
	UNIT - V	18			
5 a.	A simply supported beam of span L is subjected to equal loads W/2 at				
	each of $1/3^{rd}$ span points. Find the expressions for deflection under the	8	L3	CO5	PO2
	load and at mid span.				
b.	A shaft is required to transmit 245 kW power at 240 rpm. The maximum				
	torque may be 1.5 times the mean torque. The shear stress in the shaft				
	should not exceed 40 N/mm ² and the twist 10 per metre length. Determine				
	the diameter required if,	10	L3	CO5	PO2
	i) The shaft is solid				
	ii) The shaft is hollow with external diameter twice the internal diameter.				

Take modulus of rigidity = 80 kN/mm^2 .

c. Determine the crippling load for a T-section of dimensions $10 \text{ cm} \times 10 \text{ cm} \times 2 \text{ cm}$ and of length 5 m when it is used as strut with both of its ends hinged as shown in Fig. 5(c). Take Young's modulus $E = 2.0 \times 10^5 \text{ N/mm}^2$.

10 L2 CO5 PO1