U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Fifth Semester, B.E. - Industrial and Production Engineering Semester End Examination; Feb. - 2021 Theory of Metal Cutting

Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:

- CO1: Recognize the geometry of cutting tools based on the materials used for machining.
- CO2: Elaborate on mechanics of machining in metal cutting, and to demonstrate the measurement of cutting forces for various machining operations.
- CO3: Identify the tool life based on different cutting speed, feed and depth of cut and understand the importance of economy in machining.
- CO4: Govern cutting tool temperature and appreciate the importance of cutting fluids.
- CO5: Explain the characteristics and properties of different tool material.

Note: I) **PART - A** is compulsory. **Two** marks for each question.

II) PART - B: Answer any Two sub questions (from a, b, c) for Maximum of 18 marks from each unit.

0 N-	II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 marks from each unit. Ouestions Marks BLs COs POs						
Q. No.	Questions		BLS	COs	POs		
-	I: PART - A	10	T 4	001	DO1		
I a.	Explain Metal cutting process.	2	L1	CO1	PO1		
b.	Mention the requirements of dynamometer.	2	L1	CO2	PO1		
c.	Mention the factor which affects tool life.	2	L1	CO3	PO1		
d.	Write a neat sketch of temperature distribution in metal cutting.	2	L1	CO4	PO1		
e.	Explain cemented carbide tools.	2	L1	CO5	PO1		
II : PART - B 90							
	UNIT - I	18					
1 a.	Differentiate between the different types of metal cutting process.	9	L1	CO1	PO1		
b.	With a neat sketch, explain the principle of chip breaking.	9	L1	CO1	PO1		
c.	With a neat sketch, explain the multi point cutting tool nomenclature.	9	L1	CO1	PO1		
	UNIT - II	18					
2 a.	Derive the relation between the different forces and coefficient of friction in	12	I 2	CO2	DO3		
	metal cutting process.	12	L3	CO2	103		
b.	A mild steel bar is turned on a lathe with a cutting tool having rake angle 100						
	and with a cutting speed of 200 mpm. If the width of cut is 3 mm and uncut	6	L3	CO2	PO3		
	thickness is 0.3 mm. Determine the shear angle, cutting force and thrust force.						
c.	With a neat sketch, explain milling dynamometer.	6	L1	CO2	PO2		
	UNIT - III	18					
3 a.	Explain the effect of cutting parameters on tool life.	9	L1	CO3	PO1		
b.	The total life for a HSS tool is expressed by the relation $VT1/7 = C1$ and for						
	tungsten carbide $VT1/5 = C2$. If the tool life for a cutting speed of 24 m/min	9	L3	CO3	PO3		
	is 128 mm. Compare the life of the two tools at a speed of 30 m/min.						
c.	Explain the different cost involved in manufacturing a component.	9	L1	CO3	PO1		

P18IP54			Page No 2		
	UNIT - IV	18			
4 a.	Explain the different types of cutting fluids.	9	L1	CO4	PO1
b.	Explain the different factors which affect heat generation in cutting zone.	9	L1	CO4	PO1
c.	With a neat sketch, explain any one techniques used for the measurement of temperature in metal cutting.			CO4	PO1
	UNIT - V				
5 a.	Explain the different properties of cutting tool materials and mention the different types of cutting tool materials.	9	L1	CO5	PO1
b.	Write a note on diamonds and multi-coated cemented carbide inserts.	9	L1	CO5	PO1
c.	Briefly explain;				
	i) Sialon tools	9	L1	CO5	PO1
	ii) Whiskered ceramics	9	LI	CO3	
	iii) CBN				