$\square$

## P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)
Third Semester, B.E. - Civil Engineering
Semester End Examination; Dec. - 2019
Fluid Mechanics
Time: 3 hrs
Max. Marks: 100
Note: i) PART - A is compulsory. Two marks for each question.
ii) PART - B: Answer any Two sub questions (from $a, b, c$ ) for Maximum of $\mathbf{1 8}$ marks from each unit.
Q. No.

## Questions

Marks
I : PART - A
I a. Define surface tension and dynamic viscosity. 2
b. Write two differences between Ideal fluid and Real fluid.
c. Define Pressure and Pressure head.
d. Distinguish between Uniform and Non-uniform flow. 2
e. Define total pressure and center of pressure.2
II : PART - B ..... 90

UNIT - I 18

1 a. Define Relative density, Kinematic viscosity and derive unit for Kinematic viscosity.
b. Specific gravity of a liquid is 0.7 , find;
i) Mass density
ii) Specific weight also find the mass and weight of 10 liters of liquid.
c. A plate having an area of $1 \mathrm{~m}^{2}$ is dragged down on inclined plane which is inclined at $45^{\circ}$ to horizontal with a velocity of $0.5 \mathrm{~ms}^{-1}$ due to its own weight. There is a cushion of liquid of 1 mm thick between the inclined plane and the plates, if viscosity of oil is $0.1 \mathrm{~N}-\mathrm{s} / \mathrm{m}^{2}$, find the weight of the plate.

## UNIT - II

2 a. State and prove Pascal's law.
b. Find the horizontal and vertical component of force and its point of application due to water / meter width of the gate AB having a quadrant shape of radius 2 m shown in Fig. $\mathrm{Q}(2)$. Find also the resultant force in Magnitude and Direction.

c. Show that the center of pressure in case of vertical plane immersed in a static mass of fluid lies below the centroid of the plane surface

UNIT - III
3 a. Show that the stream lines equipotential lines meet orthogonally.
Define; i) Stream function ii) Velocity potential function.
b. A Venturimeter of inlet dia 300 mm and throat dia 150 mm is inserted in vertical pipe carrying water flowing in the upward direction. A differential mercury manometer connected to the inlet and throat gives a reading of 200 mm . Find the discharge, if the coefficient of discharge of meter is 0.98 .
c. In a two dimensional incompressible flow the fluid velocity components are given by $U=X-4 Y$ and $V=-Y-4 X$. When $U$ and $V$ are $X$ and $Y$ components of velocity of flow, show that the flow satisfies the continuity equation and obtain stream function.

## UNIT - IV

4 a . List out the losses that occur in a pipe flow. Give the equation for quantifying them.
b. i) Explain water hammer in pipes.
ii) Derive an expression for sudden contraction of pipe.
c. A pipe line of length 2000 m is used for power transmission. If 110.3625 kW power is to be transmitted through the pipe in which water having a pressure of $490.5 \mathrm{~N} / \mathrm{cm}^{2}$ at inlet is flowing. Find the diameter of the pipe and efficiency of transmission, if the pressure drop over the length of pipe is $98.1 \mathrm{~N} / \mathrm{cm}^{2}$. Take; $f=0.0065$.

## UNIT - V

5 a. Define hydraulic coefficients.
b. Derive the equation for discharge through a triangular notch.
c. i) Make a note on Borda's mouth piece.
ii) Make a note on Cipolletti notch.

