P18CV	V35 Page No	. 1
	U.S.N	
Time:	P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Third Semester, B.E Civil Engineering Semester End Examination; Dec 2019 Fluid Mechanics 3 hrs Max. Marks:	100
	PART - A is compulsory. Two marks for each question.	100
iij) PART - B : Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 marks from each unit.	
Q. No.	Questions	Marks
Ia.	I : PART - A Define surface tension and dynamic viscosity.	10 2
b.	Write two differences between Ideal fluid and Real fluid.	2
с.	Define Pressure and Pressure head.	2
d.	Distinguish between Uniform and Non-uniform flow.	2
e.	Define total pressure and center of pressure.	2
	II : PART - B	90
	UNIT - I	18
1 a.	Define Relative density, Kinematic viscosity and derive unit for Kinematic viscosity.	9
b.	Specific gravity of a liquid is 0.7, find;	
	i) Mass density ii) Specific weight also find the mass and weight of 10 liters of liquid.	9
с.	A plate having an area of 1 m^2 is dragged down on inclined plane which is inclined at 45° to	
	horizontal with a velocity of 0.5 ms^{-1} due to its own weight. There is a cushion of liquid of	
	1 mm thick between the inclined plane and the plates, if viscosity of oil is 0.1 N-s/m^2 , find	9
	the weight of the plate.	
	UNIT - II	18

2 a. State and prove Pascal's law.

b. Find the horizontal and vertical component of force and its point of application due to water / meter width of the gate AB having a quadrant shape of radius 2 m shown in Fig. Q(2). Find also the resultant force in Magnitude and Direction.

9

9

P18CV35 Page No		2
c.	Show that the center of pressure in case of vertical plane immersed in a static mass of fluid	9
	lies below the centroid of the plane surface	9
	UNIT - III	18
3 a.	Show that the stream lines equipotential lines meet orthogonally.	9
	Define; i) Stream function ii) Velocity potential function.	-
b.	A Venturimeter of inlet dia 300 mm and throat dia 150 mm is inserted in vertical pipe	
	carrying water flowing in the upward direction. A differential mercury manometer connected	9
	to the inlet and throat gives a reading of 200 mm. Find the discharge, if the coefficient of	
_	discharge of meter is 0.98.	
c.	In a two dimensional incompressible flow the fluid velocity components are given by	0
	U = X - 4Y and $V = -Y - 4X$. When U and V are X and Y components of velocity of flow,	9
	show that the flow satisfies the continuity equation and obtain stream function. UNIT - IV	18
4 a.	List out the losses that occur in a pipe flow. Give the equation for quantifying them.	9
ча. b.	i) Explain water hammer in pipes.	7
0.	ii) Derive an expression for sudden contraction of pipe.	9
c.	A pipe line of length 2000 m is used for power transmission. If 110.3625 kW power is to be	
	transmitted through the pipe in which water having a pressure of 490.5 N/cm ² at inlet is	
	flowing. Find the diameter of the pipe and efficiency of transmission, if the pressure drop	9
	over the length of pipe is 98.1 N/cm ² . Take; $f = 0.0065$.	
	UNIT - V	18
5 a.	Define hydraulic coefficients.	9
b.	Derive the equation for discharge through a triangular notch.	9
c.	i) Make a note on Borda's mouth piece.	4
	ii) Make a note on Cipolletti notch.	5

* * *