U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Third Semester, B.E. - Electronics and Communication Engineering Semester End Examination; Dec. - 2019 Digital Electronic Circuits

Time: 3 hrs Max. Marks: 100

Note: i) PART - A is compulsory. Two marks for each question.

Q. No.	Questions			
	I: PART - A	10		
I a.	Define canonical minterm and canonical maxterm.	2		
b.	What are the differences between synchronous and asynchronous counters?	2		
c.	Draw the schematic of full adder using two half adders.	2		
d.	What is race around condition in JK flip-flop? When does it occur?	2		
e.	Compare Moore and Mealy models.	2		
	II : PART - B	90		
	UNIT - I	18		
1 a.	Simplify the following Boolean expressions using k-map:			
	i) $f(ABCD) = \overline{ABC} + AD + B\overline{D} + C\overline{D} + A\overline{C}$	9		
	ii) $F(wxyz) = (w+x+\overline{y}).(\overline{x}+\overline{z}).(\overline{w}+y).(x+y)$			
b.	Find the minimal sum of the Boolean expression using Quine-McCluskey method,			
		9		

$$f = \sum m(1, 3, 6, 8, 9, 10, 12, 14) + \sum d(7, 13)$$

c. Simplify the following expressions using VEM technique:

i)
$$f(ABCD) = \sum m(2, 3, 5, 6, 8, 11, 12, 13)$$

ii) $Y = \overline{ABCD} + \overline{ABCDE} + \overline{ABCDE} + \overline{ABCDE} + \overline{ABCDE} + \overline{ABCDF} + \overline{ABCDF} + \overline{ABCDF} + \overline{ABCDE}$

- 2 a. i) Implement Full subtractor using a suitable decoder.
 - ii) Design a 2 bit comparator and implement using basic gates.
 - b. Implement $f = ad + b\overline{c} + bd$ using (i) 16:1 MUX (ii) 8:1 MUX (iii) 4:1 MUX 9
 - c. Write a short note Read Only Memory (ROM) and Programmable Logic Array (PLA).

9

9

UNIT - III

3 a. Derive the characteristic equations of SR Flip flop and JK Flip flop.

- 9
- b. Explain the operation of Master-Slave JK flip flop using the logic diagram, truth table and clock diagram.
- 9

18

c. Convert; (i) SR Flip flop to JK Flip flop (ii) JK flip flop to D flip flop

9

UNIT-IV

18

- 4 a. Explain with suitable logic diagram and truth table the operation of the following shift registers:
- 9

- (i) Serial-in-Serial-out
- (ii) Serial-in-Parallel-out
- (iii) Parallel-in-Serial-out
- (iv) Parallel-in-Parallel out
- b. Design a counter using JK flip flop to count the following sequence

9

$$0 \rightarrow 1 \rightarrow 3 \rightarrow 7 \rightarrow 6 \rightarrow 4 \rightarrow 0$$

c. Design an arithmetic circuit with two select lines S_1 and S_0 that generates the following arithmetic operations. Draw the logic diagram.

S_1	S_0	Cin = 0	Cin = 1
0	0	F = A	F = A + 1
0	1	F = A + B	F = A + B + 1
1	0	$F = A + \overline{B}$	$F = A + \overline{B} + 1$
1	1	F = A - 1	F = A

9

UNIT - V

18

- 5 a. For the logic diagram given below:
 - i) Write the excitation table and derive the output equations
 - ii) Write the next state equations
 - iii) Construct a transition table
- iv) Draw the state diagram

- Design a Mealy type sequence detector to detect a serial input 101 (use D F/F).
- 9

9

c. Differentiate Mealy state machine and Moore State machine.

9