\square

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)
Third Semester, B.E. - Electronics and Communication Engineering Semester End Examination; Dec. - 2019

Digital Electronic Circuits
Time: 3 hrs
Max. Marks: 100
Note: i) PART - A is compulsory. Two marks for each question.
ii) PART - B: Answer any Two sub questions (from a, b, c) for Maximum of 18 marks from each unit.
Q. No.

Questions

Marks
I : PART - A
I a. Define canonical minterm and canonical maxterm.2
b. What are the differences between synchronous and asynchronous counters? 2
c. Draw the schematic of full adder using two half adders.2
d. What is race around condition in JK flip-flop? When does it occur? 2
e. Compare Moore and Mealy models.

II : PART - B

UNIT - I

1 a . Simplify the following Boolean expressions using k-map:
i) $f(A B C D)=\bar{A} \bar{B} C+A D+B \bar{D}+C \bar{D}+A \bar{C}$
ii) $\quad F(w x y z)=(w+x+\bar{y}) \cdot(\bar{x}+\bar{z}) \cdot(\bar{w}+y) \cdot(x+y)$
b. Find the minimal sum of the Boolean expression using Quine-McCluskey method,

$$
f=\sum m(1,3,6,8,9,10,12,14)+\sum d(7,13)
$$

c. Simplify the following expressions using VEM technique:
i) $f(A B C D)=\sum m(2,3,5,6,8,11,12,13)$
ii) $Y=\bar{A} \bar{B} \bar{C} \bar{D}+\bar{A} \bar{B} C D \bar{E}+\bar{A} B \bar{C} \bar{D} E+\bar{A} B C D+A B C \bar{D}+A \bar{B} C \bar{D} F+\bar{A} B C \bar{D} \bar{F}+A B C D E$

UNIT - II
2 a. i) Implement Full subtractor using a suitable decoder.
ii) Design a 2 bit comparator and implement using basic gates.
b. Implement $f=a d+b \bar{c}+b d$ using
(i) 16:1 MUX
(ii) 8:1 MUX
(iii) 4:1 MUX
c. Write a short note Read Only Memory (ROM) and Programmable Logic Array (PLA).

3 a. Derive the characteristic equations of SR Flip flop and JK Flip flop.
b. Explain the operation of Master-Slave JK flip flop using the logic diagram, truth table and clock diagram.
c. Convert; (i) SR Flip flop to JK Flip flop (ii) JK flip flop to D flip flop

UNIT - IV

4 a. Explain with suitable logic diagram and truth table the operation of the following shift registers:
(i) Serial-in-Serial-out
(ii) Serial-in-Parallel-out
(iii) Parallel-in-Serial-out
(iv) Parallel-in-Parallel out
b. Design a counter using JK flip flop to count the following sequence
$0 \rightarrow 1 \rightarrow 3 \rightarrow 7 \rightarrow 6 \rightarrow 4 \rightarrow 0$
c. Design an arithmetic circuit with two select lines S_{1} and S_{0} that generates the following arithmetic operations. Draw the logic diagram.

S_{1}	$\mathrm{~S}_{0}$	$\mathrm{Cin}=0$	$\mathrm{Cin}=1$
0	0	$\mathrm{~F}=\mathrm{A}$	$\mathrm{F}=\mathrm{A}+1$
0	1	$\mathrm{~F}=\mathrm{A}+\mathrm{B}$	$\mathrm{F}=\mathrm{A}+\mathrm{B}+1$
1	0	$F=A+\bar{B}$	$F=A+\bar{B}+1$
1	1	$\mathrm{~F}=\mathrm{A}-1$	$\mathrm{~F}=\mathrm{A}$

UNIT - V
5 a. For the logic diagram given below:
i) Write the excitation table and derive the output equations
ii) Write the next state equations
iii) Construct a transition table
iv) Draw the state diagram

b. Design a Mealy type sequence detector to detect a serial input 101 (use D F/F).
c. Differentiate Mealy state machine and Moore State machine.

