U.S.N

\square

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)
Third Semester, B.E. - Electronics and Communication Engineering
Semester End Examination; Dec. - 2019
Network Analysis and Synthesis
Time: 3 hrs
Max. Marks: 100
Note: i) PART - A is compulsory. Two marks for each question.
ii) PART - B: Answer any Two sub questions (from a, b, c) for Maximum of $\mathbf{1 8}$ marks from each unit.
Q. No.

Questions

I : PART - A
I a. State Thevenin theorem.
b. Define bandwidth and selectivity of a series RLC circuit.
c. Find the Laplace transform of damped hyperbolic sine function $e^{-a t} \sin (w t)$.
d. Define the following:
i) link
ii) sub-graph
e. Determine whether the polynomial $P(s)=s^{3}+3 s^{2}+2 s+1$ is Hurwitz or not.
II : PART - B 90

UNIT - I
1 a. Find the nodal voltage in the circuit.

b. Find equivalent resistance at terminal AB in Fig.1(b)

Fia 1.(b)

fig 1.(c)
c. Find the voltage ' V ' across 3Ω resistor using super position theorem for the circuit given in Fig.1(c).

UNIT - II

2 a. What is resonance? Show that resonant frequency of series resonance circuit is equal to geometric mean of two half power frequencies.
b. A parallel resonant circuit has a coil of $150 \mu \mathrm{H}$ with Q factor of 100 and is resonated at 1 M Hz;
i) Specify the required value of capacitance
ii) What is resistance of coil?
iii) What is resistance of circuit at parallel resonance?
iv) What is absolute band width of resonant circuit?
c. Determine $v, \frac{d v}{d t}, \frac{d^{2} v}{d t^{2}}$ at $t=0^{+}$when the switch k is opened at $t=0$ for the Fig. 2(c).

3 a. Use initial and final value theorem to find $f(0)$ and $f(\infty)$ for the following :
i) $F(s)=\frac{s^{3}+7 s^{2}+5}{s\left(s^{3}+3 s^{2}+4 s+2\right)}$
ii) $F(s)=\frac{e^{2 s} /(s+2)}{s^{2}+5}$
iii) $F(s)=\frac{s(s+4)(s+8)}{(s+1)(s+6)}$
b. Find the inverse Laplace transform of $f(s)=\frac{2 s+4}{\left(s^{2}+4 s+13\right)}$.
c. In the series RL circuit shown in Fig.3(c) the source voltage is $V(t)=50 \sin 250 t V$. Determine the resulting current, if the switch is closed at $t=0$.

UNIT - IV

4 a. Define Z parameters for the network shown in Fig. 4(a).
b. Determine the transmission parameters for the network shown in the Fig. 4 (b).
c. In the network shown in Fig.4(c) consider branches 1, 3, 4 forming a tree. Write a tie set schedule and hence write equilibrium equation on loop current basis and find values of loop currents consider that the branch number indicates value of resistance in that branch.

5 a. Test whether $F(s)=\frac{2 s^{3}+2 s^{2}+3 s+2}{s^{2}+1}$ is positive real function.
b. Realize foster form-II for the following LC impedance function $Z(s)=\frac{\left(s^{2}+1\right)\left(s^{3}+3\right)}{s\left(s^{2}+2\right)\left(s^{2}+4\right)}$.
c. Realize caver foster-I forms for the following RC impedance function $Z(s)=\frac{s+4}{(s+2)(s+6)}$.

Fig $4(c)$

* * *

