

- UNIT I
- 1 a. Find the nodal voltage in the circuit.

b. Find equivalent resistance at terminal AB in Fig.1(b)

9

P18EC35

c. Find the voltage 'V' across 3 Ω resistor using super position theorem for the circuit given in Fig.1(c).

- 2 a. What is resonance? Show that resonant frequency of series resonance circuit is equal to geometric mean of two half power frequencies.
- b. A parallel resonant circuit has a coil of 150 μ H with Q factor of 100 and is resonated at 1 M Hz;
 - i) Specify the required value of capacitance
 - ii) What is resistance of coil?
 - iii) What is resistance of circuit at parallel resonance?
 - iv) What is absolute band width of resonant circuit?
- c. Determine $v, \frac{dv}{dt}, \frac{d^2v}{dt^2}$ at $t = 0^+$ when the switch k is opened at t = 0 for the Fig. 2(c).

UNIT - III

3 a. Use initial and final value theorem to find f(0) and $f(\infty)$ for the following :

$$i)F(s) = \frac{s^{3} + 7s^{2} + 5}{s(s^{3} + 3s^{2} + 4s + 2)} \qquad ii)F(s) = \frac{e^{2s} / (s + 2)}{s^{2} + 5}$$

$$iii)F(s) = \frac{s(s+4)(s+8)}{(s+1)(s+6)}$$
9

- b. Find the inverse Laplace transform of $f(s) = \frac{2s+4}{(s^2+4s+13)}$. 9
- c. In the series RL circuit shown in Fig.3(c) the source voltage is $V(t) = 50 \sin 250t V$. Determine the resulting current, if the switch is closed at t = 0.

- 4 a. Define Z parameters for the network shown in Fig. 4(a).
 - b. Determine the transmission parameters for the network shown in the Fig.4 (b).
 - c. In the network shown in Fig.4(c) consider branches 1, 3, 4 forming a tree. Write a tie set schedule and hence write equilibrium equation on loop current basis and find values of loop
 9 currents consider that the branch number indicates value of resistance in that branch.

9

9

18

9

18

9

9

9

P18EC35

Page No... 3

UNIT - V

5 a. Test whether $F(s) = \frac{2s^3 + 2s^2 + 3s + 2}{s^2 + 1}$ is positive real function.

b. Realize foster form–II for the following LC impedance function $Z(s) = \frac{(s^2 + 1)(s^3 + 3)}{s(s^2 + 2)(s^2 + 4)}$.

c. Realize caver foster–I forms for the following RC impedance function $Z(s) = \frac{s+4}{(s+2)(s+6)}$.

* * *

9

9

9

18