U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)
First Semester, B.E. - Semester End Examination; Dec. - 2019

Basic Electrical Engineering

(Common to All Branches)

Time: 3 hrs Max. Marks: 100

Note: i) PART - A is compulsory. Two marks for each question.

ii) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 marks from each unit.

Q. No.	Questions	Marks		
	I : PART - A	10		
I a.	Define Peak factor and its value for sinusoidal alternating current.	2		
b.	What are the causes of electric shock?	2		
c.	Justify the employment of D.C. shunt motors for driving lathes.	2		
d.	In transformer, Iron loss remains constant and copper loss is variable. Justify.	2		
e.	What are the features of Brushless DC Motor?	2		
	II : PART - B	90		
	UNIT - I	18		
1 a.	Derive the expression for the power in series R-L circuit. Draw the related waveforms.	9		
b.	A choice coil takes a current of 2 A, lagging 60° behind the applied voltage of 200 V at 50 Hz.			
	Calculate the inductance, resistance and impedance of the coil. Also determine the power	9		
	consumed when it is connected across 100 V, 25 Hz supply.			
c.	Define power factor and its significance. Write short notes on;			
	i) Apparent power	9		
	ii) Real power	,		
	iii) Reactive power			
	UNIT - II	18		
2 a.	Derive an expression for Line Voltage and Line current in three phase delta connected load.			
	With neat circuit, explain three way control of load	9		
b.	How does the fuses are rated? What are the requirements of fuse? How fuses are classified?	9		
	Mention the advantages and disadvantages of Fuse.			
c.	How electric shock is caused? What are the precautions to be taken to prevent electric shocks?			
	What are the remedies to be taken if a person has received an electric shock?	9		
	UNIT - III	18		
3 a.	Explain in detail types of D.C. motors and their representations.	9		

b.	A 4 pole lap wound shunt generator delivers 200 A at terminal voltage of 250 V. It has a field		
	and armature resistance of 50 Ω and 0.05 Ω respectively. Neglecting the brush drop,		
	determine;		
	i) Armature current	9	
	ii) Current per armature parallel path		
	iii) emf generated		
	iv) Power developed		
c.	Mention the different types of synchronous generators and explain the constructions of each	0	
	type with relevant diagrams.	9	
	UNIT - IV	18	
4 a.	In a 25 kVA, 2000/200 V, single phase transformer the Iron and full load copper losses are		
	350 and 400 W respectively. Calculate the efficiency at unity power factor at,	9	
	i) Full load	9	
	ii) Half full load		
b.	Explain the concept of Rotating magnetic field in three phase induction motor.	9	
c.	With usual notation, derive an expression for the induced EMF in the single phase transformer	ransformer	
	and define the term transformation ratio.	9	
	UNIT - V	18	
5 a.	Explain the construction and working of BLDC motor. Mention its applications.	9	
b.	Mention the types of Servomotor. Explain the function of two-phase AC servomotor, with	9	
	neat schematic diagram.	9	
c.	Explain the construction and working of capacitor-start induction motor.	9	