\square

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)
Third Semester, B.E. - Electrical and Electronics Engineering Semester End Examination; Dec. - 2019

Electrical Circuit Analysis

Time: 3 hrs
Max. Marks: 100
Note: i) PART - A is compulsory. Two marks for each question.
ii) PART - B: Answer any Two sub questions (from a, b, c) for Maximum of $\mathbf{1 8}$ marks from each unit.
Q. No.

Questions

I : PART - A
I a. Explain the concept of super Mesh in the analysis of network using mesh analysis.
b. List out the conditions to be satisfied by a periodic function $f(t)$ for the existence of its Fourier series.
c. What are initial conditions in a network? Explain importance of their determination in a network.
d. Find whether following network function represent driving point immittance function? If not, List the errors.
$F_{1}(S)=\frac{4 S^{4}+S^{2}-3 S+1}{S^{3}+2 S^{2}+2 S+40}$
e. What is meant by unit impulse function and find its Laplace Transform?
II : PART - B 90

UNIT - I
1 a. In the network shown in Fig. 1(a), use nodal technique to determine i_{x}.

Fig.1(a)
b. In the network shown in Fig. 1(b), use mesh equations to find the mesh currents i_{1}, i_{2} and i_{3} as assigned.

Fig.1(c).
c. Find the Thevenin's equipment network across the terminals A and B of the network shown in Fig.1(c).

Fig.1(c).

UNIT - II

2 a. A series RLC circuit has $\mathrm{Q}_{0}=5.1$ at its resonant frequency of 100 kHz . Assuming the power dissipation of the circuit is 100 W when drawing a current of 0.8 A , find;
i) RLC
ii) Bandwidth $\Delta \mathrm{f}$
iii) Half power frequencies f_{1} and f_{2}
b. Find the Fourier series for the waveform shown in Fig .2(b) Assume $\mathrm{V}=10 \mathrm{~V}, \mathrm{~T}=1 \mathrm{~s}$. (Trigonometric Fourier series)

Fig. 2 (b).
c. A voltage given by $V=50+50 \sin (5000 t)+30 \sin (10000 t)+20 \sin (20000 t)$ is applied to a circuit consisting of two elements in series. The current is;
$I=11.2 \sin \left(5000 t+63.4^{\circ}\right)+10.6 \sin \left(10000 t+45^{\circ}\right)+8.97 \sin \left(20000 t+26.6^{\circ}\right)$.
$\begin{array}{ll}\text { Find; i) Average power } & \text { ii) Constants as parameter of the circuit. }\end{array}$

UNIT - III

3 a. Fig. 3(a) shows a network with zero capacitor voltage and zero inductor current, when the switch K is open. At $t=0$ the switch K is closed. Solve for;
i) V_{1} and V_{2} at $t=0^{+}$
ii) $\frac{\mathrm{dV}_{1}}{\mathrm{dt}}$ and $\frac{\mathrm{dV}_{2}}{\mathrm{dt}}$ at $\mathrm{t}=0^{+}$
iii) V_{1} and V_{2} at $t=\infty$.

b. Fig. 3(b) shows a RLC parallel circuit excited by a dc current source. At $t=0$, the switch K is opened. Find $V(t)$.

c. Find the Laplace transform of the periodic saw tooth wave shown in Fig 3(c).

4 a . The h-parameter of a certain two port network are $\mathrm{h}_{11}=1 \Omega, \mathrm{~h}_{12}=2, \mathrm{~h}_{21}=-2, \mathrm{~h}_{22}=1 \mathrm{~F}$ Find;
i) Z-parameters
ii) Y-parameters
iii) ABCD parameters

Find whether the network is reciprocal, symmetrical.
b. A star connected 3- ϕ load has a resistance of 8Ω and a capacitive reactance of 10Ω in each phase. It is fed from a $400 \mathrm{~V}, 3-\phi$ balanced supply.
i) Find the line current, total VA, active and reactive power
ii) Draw Phasor diagram
c. A balanced delta connected/load shown in Fig.4(c) takes a line current of 15 A , when connected to a balanced $3-\phi, 400 \mathrm{~V}$ system. A wattmeter with its current coil in one line and its pressure coil between the two remaining lines reads 2000 W . Describe the load impedance.

5 a. For the network shown in Fig. 5(a), find the driving point input impedance. Plot the Pole-Zero patterns of network shown.

b. Fig. 5(b) shows an RC circuit consisting of two capacitors and one resistance. $\mathrm{C}_{1}=10 \mu \mathrm{~F}, \mathrm{C}_{2}=40 \mu \mathrm{~F}$ and $\mathrm{R}=0.5 \mathrm{M} \Omega$. There is initial change on C_{1} such that voltage across its terminals is 200 V . At $t=0$ the switch ' K ' is closed.
i) Find time domain voltage expressions for voltages across the two capacitors
ii) Find the steady state voltages across these capacitors. Use Laplace transformation method.

c. A series circuit has a resistance of 4Ω and an inductance of 0.1 H as shown in Fig. 5(c). The switch K is closed at $t=0$ by exciting the circuit by the voltage sources when,
i) Unit impulse V_{g} of $\delta(t-3)$
ii) A unit ramp voltage $\mathrm{r}(\mathrm{t}-3)$

Find the current $i(t)$ for each source separately i.e. Taking one at a time.

