U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Third Semester, B.E. - Electrical and Electronics Engineering Semester End Examination; Dec. - 2019 Analog Electronics Circuits

Time: 3 hrs Max. Marks: 100

Note: i) PART - A is compulsory. Two marks for each question.

ii) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 marks from each unit.

Q. No.	Questions	Marks				
	I : PART - A	10				
I a.	How does a clipping circuit differ from a clamping circuit?	2				
b.	What is Barkhausen criteria?	2				
c.	What are the advantages of Negative feedback in amplifiers?					
d.	Define total Harmonic Distortion and state the expression for the same.					
e.	State the important features of JFET.					
	II : PART - B					
	UNIT - I	18				
1 a.	With neat circuit diagram and waveforms, explain the operation of positive clamper.	9				
b.	Determine the dc bias voltage V_{CE} and current I_{C} for the voltage divider bias					
	configuration with R_1 = 39 Ω , R_2 = 3.9 $k\Omega$, R_C = 10 $k\Omega$, R_E = 1.5 $k\Omega$ and V_{CC} = 22 V .	9				
	Assume Silicon transistor with $\beta = 100$ and also draw the circuit.					
c.	Explain with a neat circuit diagram, the low frequency response of RC coupled amplifier.	9				
	UNIT - II	18				
2 a.	Derive the expressions for current gain, voltage gain, input impedance and output	9				
	impedance for an emitter follower circuit with h-parameter model for the transistor.	9				
b.	With a neat circuit diagram explain the operation of transistor RC phase shift oscillator.	0				
	Write the expression for the frequency of oscillation.	9				
c.	Explain the basic operation of LC tank circuit in tuned oscillation. Also calculate the					
	frequency of oscillation of a Harley oscillator with $L_1 = 0.5 \ mH, \ L_2 = 1 \ mH$ and	9				
	$C = 0.2 \mu F.$					
	UNIT - III	18				
3 a.	With a neat block diagram, explain various feedback amplifier topologies.	9				
b.	Using a block diagram approach obtain the transfer gain of the feedback amplifier.	9				
c.	Derive expressions for input and output resistances of a voltage shunt feedback amplifier.	9				

Draw the circuit diagram and explain the operation of transformer coupled Class B push 4 a. pull power amplifier.

9

18

b. Explain the operation of series fed directly coupled class A power factor. Also mention its advantages and disadvantages.

9

9

c. For a class B Amplifier using a supply of VCC = 30 V and driving a load of 16 Ω , determine the maximum input power, output power, efficiency and transistor dissipation.

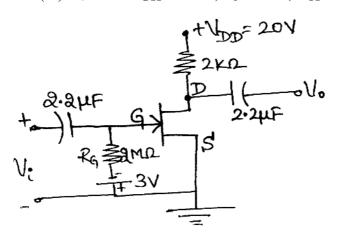
UNIT - V

18

With necessary diagrams explain the construction, working and characteristics of n-channel JFET.

9

b. Explain the construction, operation and characteristics of n-channel enhancement MOSFET.


9

9

c. For a JFET amplifier shown below calculate;

 $(i) Z_i$

- (ii) **Z**₀
- (iii) A_V. Given $I_{DSS} = 5$ mA, $V_P = -6$ V, $Y_{OS} = 40 \mu s$

