U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Third Semester, B.E. - Electricals and Electronics Engineering Semester End Examination; Dec.-2019

Digital Electronics Circuit

Time: 3 hrs Max. Marks: 100

Note: i) PART - A is compulsory. Two marks for each question.

ii) PART - B: Answer any Two sub questions (from a, b, c) for Maximum of 18 marks from each unit.

O No	Questions	Marks				
Q. No.	I : PART - A	10				
Т -		10				
I a.	Use 2's complement method to perform $M - N$ where, M and N are binary numbers given by	2				
	M = 1010100, N = 1000100.					
b.	Given $f(a,b,c) = \overline{b} + a\overline{c}$, Write $f = \pi m$	2				
c.	Obtain the characteristic equation of JKFF.	2				
d.	Number of Flip flops required to build a binary counter that counts from 0 to 13 is	2				
e.	Define Fan-in and Fan-out as applied to logic families.	2				
	II: PART - B	90				
	UNIT - I	18				
1 a.	Represent the following in both Canonical minterm and Canonical maxterm forms in decimal					
	notation, i) $f = xy + yz$ ii) $f = (a+b)(b+c)$	9				
b.	Convert the given expression in standard POS form:					
	i) $f(A,B,C) = (A+B)(B+\overline{C})(A+C)$ ii) $f(A,B,C) = A.(A+B+C)$	9				
c.	Find the complement of the following functions:					
	$f_1 = \overline{x}y\overline{z} + \overline{x}y\overline{z}$ $f_2 = x(\overline{y}\overline{z} + yz)$	9				
	UNIT - II	18				
2 a.	Obtain the simplified expression in POS form,					
	i) $f(a,b,c,d) = \overline{abd} + bcd + a\overline{bd} + b\overline{cd}$	9				
	ii) $f(a,b,c,d) = \sum m(1,3,5,7,8,10,12,13,14) + \sum d(4,6,15)$					
b.	Obtain a minimal sum for the Boolean function					
	$f(a, b, c, d) = \sum m(0, 2, 3, 4, 8, 10, 12, 13, 14)$ using Quine-McCluskey method.	9				
c.	Explain the working of carry look ahead adder with relevant circuit diagrams.	9				

P18.	EE34 Page No	2	
	UNIT - III	18	
3 a.	Implement a full adder using a 2:4 decoder.	9	
b.	Realize the function $f(a, b, c) = \sum m(1,4,5,7)$ using 4:1 Mux using b and c as the select lines.	9	
c. i) Convert SR flip-flop to JK flip-flop		9	
	ii) Convert D flip-flop to T flip-flop		
	UNIT - IV	18	
4 a.	With a neat block diagram, bring out the differences between Mealy and Moore Models.	9	
b.	With a neat diagram, explain the working of a SISO, PIPO – 4 bit shift register.	9	
c.	Design a synchronous Mod 6 counter for the sequence 0, 2, 3, 6, 5, 1, 0 using	9	
	D flip-flops.	9	
	UNIT - V	18	
5 a.	With the help of a neat diagram, explain the Binary weighted resister D/A converter.	9	
b.	With the help of a neat diagram, explain the working of flash ADC.	9	
c.	With a neat diagram the operation of a two input TTL NAND gate.	9	