
P181	P18IS32 Pag		
	U.S.N		
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Third Semester, B.E Information Science and Engineering Semester End Examination; Dec 2019			
	Digital DesignTime: 3 hrsMax. Marks: 10	00	
Note: I) PART - A is compulsory. Two marks for each question.		
) PART - B : Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 marks from each unit.		
Q. No.	Questions	Marks	
	I:PART - A	10	
I a.	What is the Boolean function obtained for the following truth table:		
	$\begin{array}{c ccc} x & y & f(x, y) \\ \hline 0 & 0 & 0 \\ \hline 0 & 1 & 0 \\ \hline 1 & 0 & 1 \\ \hline 1 & 1 & 1 \end{array}$	2	
b.	Obtain the minimal form from the K-map		
	a <u>bc</u> a <u>1 X X 1</u> <u>1 X</u>	2	
c.	Give the excitation table of JK flip flop.	2	
d.	What does the following gate gives the output?		
	x yt port ?	2	
e.	What is the number of flip flops required to design mod-200 counter	2	
	II: PART - B	90	
	UNIT - I	18	
1 a.	Express -19 , 750 is 2's complement representation. Then show how this number is stored at address 2000. Use hexadecimal notation to compression the data.	9	
b.	Design a combinational circuit whose output is 1 for the binary number > 5 and <10 and numbers from 10 - 15 are don't care condition.	9	
c.	Define universal gates. Implement the following function:		
	i) Nand gates only g = x'y + xy + xy' ii) Nor gates only iii) Nor gates only	9	
	Contd?	2	

_

P18	IS32 Page N	ю 2
	UNIT - II	18
2 a.	Simplify the given SOP expression using Quine McCluskey method:	9
	$F(a, b, c, d) = \sum m(2, 3, 10, 11, 12, 13, 14, 15) + d(0, 1)$	9
b.	Realize the following expression using decoder:	9
	i) $f = xy + x'y + xy'$ ii) $f = xyz + x'z + xy$ iii) $f = x'z + x'y + z'$	9
c.	Implement the following using PLA	
	$f(A, B, C) = \sum m(0, 2, 4, 5, 6)$	9
	$f(A, B, C) = \sum m(0, 1, 3, 5)$	
	UNIT - III	18
3 a.	Discuss half subtractor and Full subtractor with a neat logic circuit.	9
b.	Discuss the operation of JK flip flop with truth table and design the JK flip flop circuit	9
	using only Nand gates.	7
c.	Convert the following:	9
	i) RS flip flop to JK flip flop ii) JK flip flop to T flip flop)
	UNIT - IV	18
4 a.	Explain the operation of 4-bit serial in serial out shift register with neat circuit diagram for	9
	4-bit data 1011.	,
b.	Design a mod-6 counter using decade CD user and also explain the circuit diagram and	9
	truth table of decade counter.	-
c.	Determine the number of possible states in a counter composed of the following number of	9
	flip flops: i) 8 ii) 7 iii) 9	
	UNIT - V	18
5 a.	Differentiate between Moore Model and Mealy model with appropriate state transition	9
	diagrams.	

b. Reduce state transition diagram using row elimination method and Implication Table method.

c. How can essential Hazard to be prevented in asynchronous sequential circuits.

9

9

* * *

P18IS32