U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Third Semester, B.E. - Information Science and Engineering Semester End Examination; Dec. - 2019 Data Structures and Algorithms

Time: 3 hrs Max. Marks: 100

Note: i) PART - A is compulsory. Two marks for each question.

ii) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 marks from each unit.

Q. No.	Questions	Marks				
	I: PART - A	10				
I a.	Write a recursive function to find factorial of given number.					
b.	What is the circular queue_full and queue_empty condition?					
c.	Write two advantages of linked lists over arrays.					
d.	Using tree concept, draw an almost complete binary tree and complete binary tree at level 2.					
e.	Write the algorithm for heap sort technique.	2				
	II: PART - B	90				
	UNIT - I	18				
1 a.	Write a C program to convert a given fully parenthesized infix expression to postfix					
	expression and convert the given infix expression to postfix with stack to trace.	9				
	((A-(B+C)*D)*(E+F))					
b.	Define stack implement push and pop operations for stack using arrays with a stack full	9				
	and stack empty conditions.					
c.	List the advantages of recursion. Write an algorithm for the Tower of Hanoi problem.	9				
	Show the trace for $n = 4$ disks.					
	UNIT - II	18				
2 a.	Develop C functions to perform the following on a singly linked list;					
	i) Insert in linked list	9				
	ii) Delete node in linked list based on position					
	iii) Display nodes in linked list					
b.	Write C function to perform to perform following operations using doubly linked list:					
	i) Insert a new node to the left of a given node	9				
	ii) To delete a given node from the list					
c.	What are the different functions to allocate and de-allocate memory dynamically? Explain	9				
	with proper syntax and an example.	,				

Page No... 2 P18IS33 **UNIT - III** 18 What is a priority queue? Write the function module to insert and delete elements from the 9 priority queue. b. Implement the following double ended queues. 9 i) Input restricted double ended queue ii) Output restricted double ended queue 9 c. Design a code to reverse a single linked list and merge two singly linked lists. **UNIT-IV** 18 With diagram, explain the following tree types: i) Binary tree 9 ii) Complete binary tree iii) Full binary tree b. Explain the different tree traversal techniques with a tree of your choice with minimum 9 levels 4. c. Develop a C program to construct a binary tree for a given arithmetic expression in 9 Postfix representation. Assume all the operators are of type binary. UNIT - V 18 5 a. What is radix sort? Explain with an example. Write the C program to implement 9 radix sort. b. With an example, explain heap data structure. How to heapify a tree? Write a note on 9 application of Heap sort. 9 c. Write a C program to implement address calculation sorting technique.