U.S.N

P.E.S. College of Engineering, Mandya - 571401
 (An Autonomous Institution affiliated to VTU, Belagavi)
 First Semester, B.E. - Semester End Examination; Dec. 2019
 Engineering Mathematics - I

(Common to all Branches)
Time: 3 hrs
Max. Marks: 100

Course Outcome

The Students will be able to:
CO1 - Apply the knowledge of calculus to solve problems related to polar curves and its applications in determining the bentness of a curve.
CO2 - Explain mean value theorems and evaluate the indeterminate form and power series using Taylors and Maclaurin's series.
CO3 - Differentiate the function of several variables differentiate the composite function. Evaluate the vector differentiation.
CO4 - Evaluate some standard integrals by applying reduction formula and solve application problems. Solve differential equations of first order and solve application problems in engineering field.
Note: i) Part - A is compulsory, one question from each unit
ii) Part - B : Answer Two sub-questions for Maximum of 18 marks from each unit.

Q. No.	Questions	Marks BLs COs
	I : PART - A	$\mathbf{1 0}$

I. a. Find the angle between radius vector and the tangent for the curve $r=a \sin \theta \quad 2 \quad \mathrm{~L} 1 \quad \mathrm{CO} 1$
b. State Lagrange's mean value theorem.
c. Compute $U_{x x}$ if $u=x^{3}-3 x y^{2}+x+e^{x} \cos y+1$
d. Evaluate $\int_{0}^{\pi / 2} \cos ^{6} x d x$

2 L1 CO4
e. Check whether the given differential equation is exact or not:

$$
\left(y^{3}+3 x^{2} y\right) d x+\left(3 x y^{2}-x^{3}\right) d y=0
$$

II : PART - B

UNIT - I

1 a . i) Show that the pairs of curves interest each other orthogonally, $r^{n}=a^{n} \cos n \theta$ and $r^{n}=b^{n} \sin n \theta$

9 L1 CO1
ii) For the equiangular spiral $r=a e^{\theta \cot \alpha}$ where a and α are constants find pedal equation.
b. i) Find the radius of curvature for the curve $y=a x^{2}+b x+c$ at $x=\frac{1}{2 a}\left(\sqrt{a^{2}-1}-b\right)$

9 L2 CO1
ii) Show that for the curve $r^{n}=a \cos \theta$, e is a constant.
c. Find the evolute of the parabola $y^{2}=4 a x$ by considering the parametric equations $x=a t^{2}, y=2 a t$.

UNIT - II
2 a. State Cauchy's mean value theorem and verify the same for e^{x} and e^{-x} in $[3,7]$
$9 \quad \mathrm{~L} 2 \mathrm{CO} 2$
b. Obtain the Maclaurin's expression of the function $\log (1+x)$ and hence deduce that, $\log \sqrt{\frac{1+x}{1+x}}=x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\ldots$.
c. Evaluate the following indeterminate forms:
i) $\lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)^{1 / x^{2}}$
ii) $\lim _{x \rightarrow \frac{\pi}{2}}(2 x \tan x-\pi \sec x)$

9
L2
CO 2

UNIT - III
18
3 a. i) Apply Euler's theorem to compute the value of $x U_{x}+y U_{y}$ for the function $u=\sec ^{-1}\left(\frac{x^{2}+y^{2}}{x-y}\right)$.
ii) Using the concept of total derivatives, find $\frac{d z}{d t}$ if $z=x y^{2}+x^{2} y$ where $x=a t, y=2 a t$.
b. i) If $u=f(x / y, y / z, z / x)$ then by using the definition of composition function prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \frac{\partial u}{\partial z}=0$.
ii) A particle moves along the curve $C: x=t^{3}, y=t^{2}-2 t, z=10 t$ where ' t ' is the time. Find the component of velocity at $t=2$ in the direction of $i+2 j+3 k$.
c. Compute a, b and c such that
$\vec{F}=(x+y+a z) i+(b x+2 y-z) j+(x+c y+2 z) k$ is irrotational. Also find scalar potential ϕ such that $\vec{F}=\nabla \phi$.

UNIT - IV

4 a. Obtain the reduction formula for $\int \sin ^{n} x d x$ and $\int_{0}^{\pi / 2} \sin ^{n} x d x$ where $n=1,2,3, \ldots$. hence evaluate $\int_{0}^{\pi / 2} \sin ^{5} x d x$
b. Apply differentiation under integral sign, evaluate $\int_{0}^{1} \frac{x^{\alpha}-1}{\log _{e} x} d x, \alpha \geq 0$ where α is a parameter. Hence compute $\int_{0}^{1} \frac{x^{3}-1}{\log x} d x$
c. Tracing the curve $y^{2}(a-x)=x^{3}, a>0$ (cissoid).

9 L2 CO4

$9 \quad \mathrm{~L} 3 \quad \mathrm{CO} 4$

UNIT - V
5 a. i) Solve: $\left(x^{2}+y^{2}+x\right) d x+x y d y=0$
ii) Solve: $e^{y}\left(\frac{d y}{d x}+1\right)=e^{x}$
b. i) Show that the orthogonal trajectories of the family of parabolas $y^{2}=4 a(x+a)$ forms self orthogonal.

L2 CO 4
ii) Test for self orthogonality $r^{n}=a \sin n \theta$
c. If the temperature of the air is $30^{\circ} \mathrm{C}$ and a metal ball cools from $100^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ in 15 minutes, find how long will it take for the metal ball to reach a temperature of $40^{\circ} \mathrm{C}$.

