P18	MA11	Page	e No	1
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) First Semester, B.E Semester End Examination; Dec. 2019 Engineering Mathematics - I (Common to all Branches) Time: 3 hrs Max. Marks: 100				
Course Outcome				
 The Students will be able to: CO1 - Apply the knowledge of calculus to solve problems related to polar curves and its applications in determining the bentness of a curve. CO2 - Explain mean value theorems and evaluate the indeterminate form and power series using Taylors and Maclaurin's series. CO3 - Differentiate the function of several variables differentiate the composite function. Evaluate the vector differentiation. 				
CO4 - Evaluate some standard integrals by applying reduction formula and solve application problems. Solve differential equations of first order and solve application problems in engineering field.				
 Note: i) Part - A is compulsory, one question from each unit ii) Part - B : Answer Two sub-questions for Maximum of 18 marks from each unit. 				
Q. No.	•	Marks	RIc	COs
Q. 110.	I : PART - A	10 10	DLS	008
I. a.	Find the angle between radius vector and the tangent for the curve $r = a \sin \theta$	2	L1	CO1
b.	State Lagrange's mean value theorem.	2	L1	CO2
c.	Compute U_{xx} if $u = x^3 - 3xy^2 + x + e^x \cos y + 1$	2	L1	CO3
d.	Evaluate $\int_{0}^{\frac{\pi}{2}} \cos^6 x dx$	2	L1	CO4
e.	Check whether the given differential equation is exact or not: $(y^3 + 3x^2y)dx + (3xy^2 - x^3)dy = 0$	2	L1	CO4
	II : PART - B	90		
	UNIT - I	18		
1 a.	 i) Show that the pairs of curves interest each other orthogonally, rⁿ = aⁿ cos nθ and rⁿ = bⁿ sin nθ ii) For the equiangular spiral r = ae^{θcotα} where a and α are constants find pedal 	9	L1	CO1
b.	equation. i) Find the radius of curvature for the curve $y = ax^2 + bx + c$ at			
	$x = \frac{1}{2a} \left(\sqrt{a^2 - 1} - b \right)$	9	L2	CO1
	ii) Show that for the curve $r^n = a \cos \theta$, e is a constant.			
c.	Find the evolute of the parabola $y^2 = 4ax$ by considering the parametric equations $x = at^2$, $y = 2at$.	9	L2	CO1
	UNIT - II	18		
2 a.	State Cauchy's mean value theorem and verify the same for e^x and e^{-x} in [3,7]	9	L2	CO2
b.	Obtain the Maclaurin's expression of the function $\log(1+x)$ and hence deduce that, $\log \sqrt{\frac{1+x}{1+x}} = x + \frac{x^3}{3} + \frac{x^5}{5} + \dots$	9	L2	CO2
	$\sqrt{1+x} - x + \frac{1}{3} + \frac{1}{5} + \dots$			

Contd...2

Page No... 2

18

9

L2

CO4

L2

CO₄

P18MA11

c. Evaluate the following indeterminate forms:

i)
$$\lim_{x \to 0} \left(\frac{\sin x}{x}\right)^{\frac{1}{x^2}}$$
ii)
$$\lim_{x \to \frac{\pi}{2}} (2x \tan x - \pi \sec x)$$
9 L2 CO2
UNIT - III
18

UNIT - III

3 a. i) Apply Euler's theorem to compute the value of $xU_x + yU_y$ for the function

$$u = \sec^{-1}\left(\frac{x^2 + y^2}{x - y}\right).$$
 9 L2 CO3

Using the concept of total derivatives, find $\frac{dz}{dt}$ if $z = xy^2 + x^2y$ ii) where x = at, y = 2at.

b. i) If
$$u = f\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)$$
 then by using the definition of composition function
prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z} = 0$. 9 L3 CO3

ii) A particle moves along the curve $C: x = t^3$, $y = t^2 - 2t$, z = 10t where 't' is the time. Find the component of velocity at t = 2 in the direction of i + 2j + 3k.

c. Compute a, b and c such that

 $\vec{F} = (x+y+az)i+(bx+2y-z)j+(x+cy+2z)k$ is irrotational. Also find scalar 9 L3 CO₃ potential ϕ such that $\vec{F} = \nabla \phi$.

UNIT - IV

Obtain the reduction formula for $\int \sin^n x dx$ and $\int_{0}^{\frac{\pi}{2}} \sin^n x dx$ where $n=1, 2, 3, \dots$ 4 a. 9

hence evaluate
$$\int_{0}^{\frac{\pi}{2}} \sin^5 x dx$$

5 a.

Apply differentiation under integral sign, evaluate $\int_{0}^{1} \frac{x^{\alpha} - 1}{\log_{\alpha} x} dx$, $\alpha \ge 0$ where α is a b. 9 CO4 L3 parameter. Hence compute $\int_{-1}^{1} \frac{x^3 - 1}{\log x} dx$

c. Tracing the curve
$$y^2(a-x) = x^3$$
, $a > 0$ (cissoid). 9 L3 CO4
UNIT - V 18

i) Solve:
$$(x^2 + y^2 + x)dx + xydy = 0$$

ii) Solve: $e^y \left(\frac{dy}{dx} + 1\right) = e^x$
9 L2 CO4

b. i) Show that the orthogonal trajectories of the family of parabolas $y^2 = 4a(x+a)$ forms self orthogonal.

- ii) Test for self orthogonality $r^n = a \sin n\theta$
- c. If the temperature of the air is 30°C and a metal ball cools from 100°C to 70°C in 15 minutes, find how long will it take for the metal ball to reach a temperature of 9 **CO**4 L3 40°C.