U.S.N \square

P.E.S. College of Engineering, Mandya - 571401 (An Autonomous Institution affiliated to VTU, Belagavi)
 Third Semester, B.E. - Semester End Examination; Dec. - 2019
 Transform Calculus Fourier series and Numerical Techniques

(Common to all Branches)
Time: 3 hrs
Max. Marks: 100

Course Outcomes

The Students will be able to:
CO1: Apply the knowledge of calculus to solve problems related to polar curves and its applications in determining the bentness of a curve.
CO2: Explain mean value theorems and evaluate the indeterminate form and power series using Taylors and Maclaurin's series.
CO3: Differentiate the function of several variables differentiate the composite function. Evaluate the vector differentiation.
CO4: Evaluate some standard integrals by applying reduction formula and solve application problems. Solve differential equations of first order and solve application problems in engineering field.
Note: I) PART - A is compulsory, one question from each unit.
II) PART - B: Answer Two sub-questions for Maximum of 18 marks from each unit.

Q. No.	Questions							Mark	BLs	COs
	I : PART - A							10		
I a.	Write Newton's backward interpolation formula upto fourth degree term.							2	L1	CO1
b.	Write Sterling's formula upto third terms.							2	L1	CO1
c.	Evaluate $\int\left(x+x^{2}\right) \cos n x d x$							2	L1	CO3
d.	Define Infinite Fourier Transform and inverse Fourier Transform.							2	L1	CO 4
e.	Solve: $\frac{\partial^{2} z}{\partial x \partial t}=e^{-t} \cos x$							2	L1	CO4
	II : PART - B							90		
	UNIT - I							18		
1 a.	From the following table find the number of students who obtained between 40 and 45 marks.							9	L2	CO1
	Marks	30-40	40-50	50-60	60-70	70-80				
	No. of students	31	42	51	35	31				
b.	Construct the interpolation polynomial for the data given below using Newton's divided difference formula.							9	L2	CO1
	x 2		4	5	6	8	10			
	$y{ }^{y}$	0	96	196	350	868	1746			
	Hence find the value of y when $x=7$ and $x=9$									
	Contd... 2									

c. i) Write Gauss's backward interpolation formula up to third degree terms.
ii) Using Stirling's formulae, estimate the value of $\tan \left(16^{\circ}\right)$ and from the data.

x	0	5	10	15	20	25	30
$\operatorname{Tan}(x)$	0	0.0875	0.1763	0.2679	0.3639	0.4663	0.5774

UNIT - II
2 a. i) Write first derivative of Newton's backward formula up to $3^{\text {rd }}$ degree term.
ii) Find the maximum and minimum value of y from the data.
$9 \quad \mathrm{~L} 3 \quad \mathrm{CO} 2$

$x:$	-2	-1	0	1	2	3	4
$y:$	2	-0.25	0	-0.25	2	15.75	56

b. i) Write Simpson's $3 / 8^{\text {th }}$ rule for $n=6$
ii) The velocity ' v ' of a particle at distance ' s ' from a point on its path is given by the table:

$X(f t)$	0	10	20	30	40	50	60
$V\left(f t s^{-1}\right)$	47	58	64	65	61	52	38

Estimate the time taken to travel 60 ft by using Simpson's $1 / 3^{\text {rd }}$ rule.
c. Evaluate: $\int_{0}^{1} \frac{1}{1+x^{2}} d x$ using Boole's rule for $n=4$ and Weddle's rule for $n=6$.

3 a. Expand the Fourier series of $f(x)=\pi^{2}-x^{2}$ in $-\pi \leq x \leq \pi$ and hence deduce that,
i) $\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+---------\infty=\frac{\pi^{2}}{12}$

L2 CO3
ii) $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+---------\infty=\frac{\pi^{2}}{6}$
b. Obtain half range sine and cosine series of $f(x)=\left\{\begin{array}{c}k x, 0 \leq x \leq \frac{l}{2} \\ k(1-x), \frac{l}{2} \leq x \leq l\end{array}\right.$

L3 CO3
c. The following data gives the variations of a periodic current over a period.

t sec:	0	$\mathrm{~T} / 6$	$\mathrm{~T} / 3$	$\mathrm{~T} / 2$	$2 \mathrm{~T} / 3$	$5 \mathrm{~T} / 6$	T
i amp	1.98	1.3	1.05	1.3	-0.88	-0.25	1.98

L2 CO3
Show that there is a direct current part of 0.75 amp in the variable current and obtain the amplitude of the first and second harmonics.
4 a. If $f(x)=\left\{\begin{array}{c}1-x^{2},|x|<1 \\ 0,|x| \geq 1\end{array}\right.$

UNIT - IV

Find the Fourier transform of $f(x)$ and hence find the value of
$9 \quad \mathrm{~L} 2 \mathrm{CO} 4$
$\int_{0}^{1} \frac{x \cos x-\sin x}{x^{3}} d x$
b. i) Obtain the Fourier sine transform of the functions,

$$
f(x)=\left\{\begin{array}{cc}
4 x, & 0<x<1 \\
4-x, & 1<x<4 \\
0, & x>4
\end{array}\right.
$$

ii) Find the Fourier cosine transform of $e^{-|x|}$
c. i) State initial value and final value theorems for Z-transform.
ii) Solve difference equation $u_{n+2}+4 u_{n+1}+3 u_{n}=3^{n}$ with $u_{0}=0, u_{1}=1$.

UNIT - V

5 a. i) Form the PDE by eliminating arbitrary constant in $z=a \log \left(x^{2}+y^{2}\right)+b$
ii) Form the PDE by eliminating arbitrary functions $z=y^{2}+2 f(1 / x+\log y)$
b. i) Define linear PDE.
ii) Solve $\left(z^{2}-2 y z-y^{2}\right) p+(x y+x z) q=x y-x z$

9 L2 CO4
c. Find the various possible solutions of the two dimensional Laplace's equation by the method of separation of variables.

