P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Third Semester, B.E. - Semester End Examination; Dec. - 2019 Transform Calculus Fourier series and Numerical Techniques

U.S.N

(Common to all Branches)

Max. Marks: 100

Time: 3 hrs

Course Outcomes

The Students will be able to:

CO1: Apply the knowledge of calculus to solve problems related to polar curves and its applications in determining the bentness of a curve.

CO2: Explain mean value theorems and evaluate the indeterminate form and power series using Taylors and Maclaurin's series.

CO3: Differentiate the function of several variables differentiate the composite function. Evaluate the vector differentiation.

CO4: Evaluate some standard integrals by applying reduction formula and solve application problems. Solve differential equations of first order and solve application problems in engineering field.

Note: I) PART - A is compulsory, one question from each unit.

II) PART - B: Answer Two sub-questions for Maximum of 18 marks from each unit.

Q. No.	Questions								BLs	COs
	I : PART - A									
I a.	Write Newton's backward interpolation formula upto fourth degree term.								L1	CO1
b.	Write Sterling's formula upto third terms.								L1	CO1
с.	Evaluate $\int (x+x^2) \cos nx dx$.								L1	CO3
d.	Define Infinite Fourier Transform and inverse Fourier Transform.								L1	CO4
e.	Solve: $\frac{\partial^2 z}{\partial x \partial t} = e^{-t} \cos x$								L1	CO4
	II : PART - B									
	UNIT - I									
1 a.	From the following table find the number of students who obtained between 40 and 45 marks.								L2	CO1
	Marks	30 - 40	40 - 50	50 - 60	60 - 70	70 - 80		9	L2	COI
	No. of students	31	42	51	35	31				
b.	Construct the interpolation polynomial for the data given below using Newton's divided difference formula.									
	x 2	2	4	5	6	8	10	9	L2	CO1
	y 1	0	96	196	350	868	1746			
	Hence find the value of <i>y</i> when $x = 7$ and $x = 9$									
							Contd2			

1 8M /						•		1 .		Pu	ge No	о 2
	i) Write Gauss's backward interpolation formula up to third degree terms.ii) Using Stirling's formulae, estimate the value of tan (16°) and from the data.											
		0	5	10		2		25	30	9	L3	CO
	$\frac{x}{\operatorname{Tan}(x)}$	0	0.0875	0.1763	0.267			0.4663	0.5774			
	$\operatorname{Tan}(\lambda)$	U	0.0075		JNIT – I		557	0.4005	0.5774	18		
2 a.	i) Write fir	st deriv	vative of	Newton's	backwa	d formu	la up to	3 rd deg	ree term.			
	 i) Write first derivative of Newton's backward formula up to 3rd degree term. ii) Find the maximum and minimum value of y from the data. 											-
	[x:	-2	-1 0		2	3	4	7	9	L3	CO
	-	y:		-0.25 0	-		15.75					
b.	i) Write Sin	mpson'				1 1						
	ii) The velo	ocity 'י	v' of a p	article at o	distance '	s' from	a point	on its p	ath is give	en		
	by the table	2:										
		X(ft	t) 0	10	20 3	0 40	50	60]	9	L2	CO
		V(fts		58	64 6	5 61	52	38				
		Ť										
	Estimate th	le time	taken to	travel 60	ft by usii	ng Simps	son's 1/	3 rd rule.				
c.	Evaluate:	$\frac{1}{1}$	dx using	Boole's 1	ule for <i>n</i>	= 4 and	Weddle	e's rule f	for $n = 6$.	9	L2	CO
	Evaluate: $\int_{0}^{1} \frac{1}{1+x^{2}} dx$ using Boole's rule for $n = 4$ and Weddle's rule for $n = 6$.											
	UNIT - III									18		
3 a.	Expand the	e Four	ier serie	s of $f(x)$	$)=\pi^2-x$	r^2 in $-\pi$	$x \le x \le x$	au and he	nce dedu	ce		
	that,											
	i) $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots - \infty = \frac{\pi^2}{12}$									0	1.0	
										9	L2	CO.
	ii) $\frac{1}{1^2} + \frac{1}{2^2}$	1	1		π^2							
	ii) $\frac{1}{1^2} + \frac{1}{2^2}$	$+\frac{1}{3^2}+\frac{1}{3^2}$	$\frac{1}{4^2} +$		$-\infty = \frac{1}{6}$	-						
						ſ		l				
b.	Obtain half	range	sine and	cosine se	ries of	$f(x) = \begin{cases} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	<i>kx</i> ,0	$\leq x \leq \frac{1}{2}$		9	L3	CO
		Tunge	Sine une		1105 OF J		k(1-x)	$\left(\right), \frac{l}{2} \leq x \leq x$	$\leq l$		13	0.0
						ί		2				
c.	The follow	ing dat	ta gives t	he variation	ons of a p	periodic o	current	over a p	eriod.			
	t sec:	0					2T/3	5T/6	Т			~~
	<i>i</i> amp	1.9					-0.88	-0.25		9	L2	CO.
	Show that	there i			-	-		variable	current ar	nd		
		-		and the second second	nd second		100					
	obtain the	e ampl	itude of	the first ar	iu secone	I narmon	105.					
		e ampl	itude of	the first ar		i narmon	105.		Contd3			

P18MA31

	UNIT - IV	18		
4 a.	If $f(x) = \begin{cases} 1 - x^2, x < 1 \\ 0, x \ge 1 \end{cases}$ Find the Fourier transform of f(x) and hence find the value of $\int_{0}^{1} \frac{x \cos x - \sin x}{x^3} dx$	9	L2	CO4
b.	i) Obtain the Fourier sine transform of the functions, $f(x) = \begin{cases} 4x, & 0 < x < 1\\ 4-x, & 1 < x < 4\\ 0, & x > 4 \end{cases}$ ii) Find the Fourier cosine transform of $e^{- x }$	9	L2	CO4
c.	i) State initial value and final value theorems for Z-transform. ii) Solve difference equation $u_{n+2} + 4u_{n+1} + 3u_n = 3^n$ with $u_0 = 0, u_1 = 1$.	9	L3	CO4
	UNIT - V	18		
5 a.	i) Form the PDE by eliminating arbitrary constant in $z = a \log (x^2 + y^2) + b$ ii) Form the PDE by eliminating arbitrary functions $z = y^2 + 2f (1/x + \log y)$	9	L1	CO4
b.	i) Define linear PDE. ii) Solve $(z^2 - 2yz - y^2) p + (xy + xz) q = xy - xz$	9	L2	CO4
c.	Find the various possible solutions of the two dimensional Laplace's equation by the method of separation of variables.	9	L2	CO4

* * *