Q. No.

P1815	532 U.S.N		Page No 1							
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Third Semester, B.E Information Science and Engineering Semester End Examination; March - 2021 Digital Design Time: 3 hrs Max. Marks: 100										
The St	<i>Course Outcomes</i> <i>udents will be able to:</i>									
 CO1: Apply the principles of Boolean algebra/K - Map to manipulate and minimize logic expressions/functions. CO2: Analyze and design Arithmetic Circuits and Data processing Circuits. CO3: Design different units that are elements of typical computer's CPU using VHDL. CO4: Design logic circuits using flip-flops/latches/registers. CO5: Analyze and design Asynchronous and Synchronous Sequential circuits. <u>Note:</u> 1) PART - A is compulsory. Two marks for each question. II) PART - B: Answer any Two sub questions (from a, b, c) for Maximum of 18 marks from each unit. 										
Q. No.	Questions	Marks		COs	POs					
-	I: PART - A	10								
1 a.	Draw the logic circuit, whose Boolean equation is $Y = \overline{A + B} + \overline{C}$.	2	L1	CO1	PO1					
b.	Draw the logic symbol for an Exclusive-OR gate.	2	L1	CO2	PO1					
с.	Define Flip flop.	2	L1	CO3	PO1					
d.	Define serial shifting and parallel shifting.	2	L1	CO4	PO1					
e.	Define excitation map.	2	L1	CO5	PO1					
	II: PART - B 90									
	UNIT - I	18								
1 a.	i) Perform the following operations (show the step by step calculation).									
	I) $(463.25)_{10} = ()_2$									
	II) $(36.25)_{10} = ()_8$	9	L3	CO1	PO1					
	III) $(AF9.0C)_{16} = ()_2$									
	ii) Why NAND and NOR gates are called as universal gates? Explain									
	with example.									
b.	Simplify the expression using Karnaugh map method;	9	L3	CO1	PO2					
	$F(A, B, C, D) = \Sigma m(1, 2, 3, 8, 9, 10, 11, 14) + d(7, 15)$									
c.	Construct the truth table and write the Boolean expression for the									
	following logic circuits.									
	$A = \frac{1}{2} \xrightarrow{7432} \frac{4}{c-5} \xrightarrow{6} y \qquad A = \frac{1}{2} \xrightarrow{7408} \frac{4}{c-5} \xrightarrow{6} y$									

P18IS32			Page No 2			
	UNIT - II	18				
2 a.	Simplify the following functions using Quine McCluskey method and					
	realize expression using gates;	9	L3	CO2	PO2	
	$F(A, B, C, D) = \Sigma(0, 5, 7, 8, 9, 10, 11, 14, 15)$					
b.	Define Multiplexer. Explain 8-to-1 multiplexer with neat circuit					
	diagram and truth table. Design 8-to-1 multiplexer using 4-to-1	9	L2	CO2	PO1	
	multiplexer.					
c.	With the help of circuit diagram, explain Programmable Array logic and	9	1.2	CON		
	Programmable Logic Array and Programmable Read only Memory.	9	L2	02	PO1	
	UNIT - III	18				
3 a.	Explain Half adder and Full Adder.	9	L2	CO3	PO1	
b.	Explain clocked SR flip flop and JK flip flop with neat circuit diagram	9	L2	CO3	PO1	
	and timing diagram.	,		005	101	
c.	Derive the characteristic equation, draw state transition diagram and					
	excitation table of the SR, JK, D and T Flip flops. Implement SR flip	9	L2	CO3	PO1	
	flop using JK flip-flop.					
	UNIT - IV	18				
4 a.	With a neat diagram and truth table, explain 4-bit SIPO shift register to	9	L2	CO4	PO1	
	store binary number 1011.					
b.	Explain Ring counter and Johnson counter.	9	L2	CO4	PO1	
c.	Show a method for constructing a Mod-10 decade counter.	9	L2	CO4	PO1	
_	UNIT - V	18				
5 a.	Differentiate between Moore model and Melay model with appropriate	9	L2	CO5	PO1	
	state transition diagrams.					
b.	Reduce state transition diagram (Moore Model) of Fig. 5b by row					
	elimination method and implication table method.					

9 L3 CO5 PO2

c. Analyze the Melay model asynchronous sequential circuit of Fig. 5(c) and show its stable state and corresponding outputs. And also give the state diagram of this circuit.

9 L3 CO5 PO2