\square
P.E.S. College of Engineering, Mandya - 571401
(An Autonomous Institution affiliated to VTU, Belagavi)
Third Semester, B.E. - Information Science and Engineering Semester End Examination; March - 2021

Digital Design
Time: 3 hrs
Max. Marks: 100

Course Outcomes

The Students will be able to:
CO1: Apply the principles of Boolean algebra/K - Map to manipulate and minimize logic expressions/functions.
CO2: Analyze and design Arithmetic Circuits and Data processing Circuits.
CO3: Design different units that are elements of typical computer's CPU using VHDL.
CO4: Design logic circuits using flip-flops/latches/registers.
CO5: Analyze and design Asynchronous and Synchronous Sequential circuits.
Note: I) PART - A is compulsory. Two marks for each question.
II) PART - B: Answer any Two sub questions (from a, b, c) for Maximum of $\mathbf{1 8}$ marks from each unit.
Q. No.

Questions

I: PART - A
1 a. Draw the logic circuit, whose Boolean equation is $Y=\overline{A+B}+\bar{C}$.
2
b. Draw the logic symbol for an Exclusive-OR gate. 2
c. Define Flip flop.
d. Define serial shifting and parallel shifting.
e. Define excitation map.

II: PART - B

Marks BLs COs POs

10

UNIT - I 90 18
1 a. i) Perform the following operations (show the step by step calculation).
I) $(463.25)_{10}=(\quad)_{2}$
II) $(36.25)_{10}=(\quad)_{8}$
III) $(\text { AF9.0C })_{16}=(\quad)_{2}$

9 L3 CO1 PO1
ii) Why NAND and NOR gates are called as universal gates? Explain with example.
b. Simplify the expression using Karnaugh map method;

$$
F(A, B, C, D)=\Sigma \mathrm{m}(1,2,3,8,9,10,11,14)+\mathrm{d}(7,15)
$$

c. Construct the truth table and write the Boolean expression for the following logic circuits.

Contd... 2

UNIT - II

2 a. Simplify the following functions using Quine McCluskey method and realize expression using gates;
$F(A, B, C, D)=\Sigma(0,5,7,8,9,10,11,14,15)$
b. Define Multiplexer. Explain 8-to-1 multiplexer with neat circuit diagram and truth table. Design 8-to-1 multiplexer using 4-to-1 multiplexer.
c. With the help of circuit diagram, explain Programmable Array logic and Programmable Logic Array and Programmable Read only Memory.

UNIT - III

3 a. Explain Half adder and Full Adder.
b. Explain clocked SR flip flop and JK flip flop with neat circuit diagram and timing diagram.
c. Derive the characteristic equation, draw state transition diagram and excitation table of the SR, JK, D and T Flip flops. Implement SR flip flop using JK flip-flop.

UNIT - IV
4 a. With a neat diagram and truth table, explain 4-bit SIPO shift register to store binary number 1011.
b. Explain Ring counter and Johnson counter.
c. Show a method for constructing a Mod-10 decade counter.

UNIT - V
5 a. Differentiate between Moore model and Melay model with appropriate state transition diagrams.
b. Reduce state transition diagram (Moore Model) of Fig. 5b by row elimination method and implication table method.

c. Analyze the Melay model asynchronous sequential circuit of Fig. 5(c) and show its stable state and corresponding outputs. And also give the state diagram of this circuit.

18

9
L3 CO2
PO2

9
L2

L3 $\quad \mathrm{CO} 5 \quad \mathrm{PO} 2$

