			age 110 1
Paranat out			
	P.E.S. College of Engineering, Mandya - 571 (An Autonomous Institution affiliated to VTU, Belagavi) Third Semester, B.E Information Science and Engineer Semester End Examination; March - 2021		
Time: 3	Discrete Mathematics and Applications	Max	Marks: 100
1000.0	Course Outcomes	mar.	<i>marks</i> . 100
CO1: Ve CO2: De pro CO3: Sou CO4: Co	Tents will be able to: rify the correctness of an argument using propositional and predicate logic. emonstrate the ability to solve problems using counting techniques and Combinator obability. Ive problems involving recurrence relations. fonstruct proofs using direct proof, proof by contraposition, proof by contrad athematical induction.		-
	ility to Explain and distinguish graphs and their properties.		
	PART - A is compulsory. Two marks for each question. PART - B : Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 marks for the second secon	rom eaci	h unit.
Q. No.	Questions	Mark	BLs COs POs
	I: PART - A	10	
1 a. Pro	ove that, for any proposition P and Q , the compound proposition is		
Ta	$\operatorname{hutology}\left[\left(7q\right)\wedge\left(p\rightarrow q\right)\right]\rightarrow\left(\neg p\right)$	2	L5 CO1 PO2
b. Pro	ove by mathematical induction that for all positive integers $n \ge 1$		
1+	$-2+3+4+\ldots+n=\frac{1}{2}n(n+1)$	2	L5 CO2 PO2
c. If :	5 colors are used to paint 26 doors, prove that atleast 6 doors will have the		
sar	me colour.	2	L5 CO3 PO3
d. Fir	nd the number of de-arrangements of 1, 2, 3, 4.	2	L3 CO4 PO2
	raw a complete Bi-partite graph of $K_{2,3}$ and $K_{3,3}$.	2	L3 CO5 PO2
	II: PART - B	90	
	UNIT - I	18	
1 a. Pro	ove the following logical equivalence without using Truth Table:		
	$P \to (q \to r) \Leftrightarrow (p \land q) \to r \qquad \text{ii}) \left[\neg p \land (\neg q \land r)\right] \lor (q \land r) \lor (p \land r) \Leftrightarrow r$	9	L5 CO1 PO4
b. Te i)	est the validity of the following argument ii)		
	$ \begin{array}{l} (\neg p \lor q) \rightarrow r \\ r \rightarrow t \\ t \\ t \end{array} \qquad \qquad$	9	L5 CO1 PO4
	p $\therefore p$ Contd. 2		

Contd... 2

Page No... 1

P18IS34			Page No 2		
c.	Find whether the following argument is valid.				
	No engineering student of first or second semester studies logic	9	L5 CO1 PO4		
	Anil is an Engineering student who studies logic	,			
	Anil is not in second semester				
2.0	UNIT - II	18			
2 a.	Show that $2^n > n^2$ for all positive integers <i>n</i> greater than 4.	9	L5 CO2 PO3		
b.	i) A student taking a history examination is directed to answer any seven of 10				
	essay questions. There is no concern about order here, find the number of				
	ways the student can answer the examination.				
	ii) If the student must answer three question from the first five and four	0			
	questions from the last five. By the rule of product, find the number of ways the student can complete the examination.	9	L5 CO2 PO4		
	iii) At Rydell High school, the gym teacher must select nine girls from the				
	junior and senior classes for a volleyball team. If there are 28 juniors and 25				
	seniors, find the number of ways, this selection can be made.				
c.	Prove that, for positive integer <i>n</i> , <i>t</i> , the coefficient of $x_1^{n_1} x_2^{n_2} x_3^{n_3} \dots x_t^{n_t}$ in the				
	expansion of $(x_1 + x_2 + x_3 + x_i)^n$ is $\frac{n!}{n_1! n_2! n_3! n_i!}$	9	L5 CO2 PO3		
	Where each n_i is an integer with $0 \le n_i \le n$, for all $1 \le i \le t$ and	,	25 002 105		
	$n_1 + n_2 + n_3 + \ldots + n_t = n$				
	UNIT - III	18			
3 a.	I) Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be any two functions. Prove the following are True:	6			
	i) If f and g are one-to-one, So is gof	U			
	ii) If gof is one-to-one, then f is one-to one		L3 CO3 PO3		
	II) Let f and g be functions from R to R defined by $f(x) = ax + b$ and $g(x) = cx + d$. What relationship must be satisfied by a, b, c, d if $gof = fog$	3			
b.	Let $A = \{1, 2, 3, 4, 5\}$ define a relation R on $A \times A$ by $(x_1, y_1) R (x_2, y_2)$ if and				
	only if $x_1 + y_1 = x_2 + y_2$				
	i) Verify that R is an equivalence relation on $A \times A$	9	L3 CO3 PO4		
	ii) Determine the equivalence classes $[(1, 3) (2, 4)]$ and $[(1, 1)]$				
	iii) Determine the partition of $A \times A$ induced by R				
c.	For A = {a, b, c, d, e} the Hasse diagram for the poset (A, R) is as shown below $e \in C$				
	booc	9	L3 CO3 PO3		
	a				

i) Determine the relation matrix for R ii) Construct the digraph for R

P18IS34

UNIT - IV

Page No... 3

- 4 a. Determine the number of positive integers x where $x \le 9,999,999$ and the sum of the digits in x equal to 31. 9 L5 CO4 PO3
 - b. Find the rook polynomial for the board made up of the shaded square in the below figure

	-						1		
			1	2					
		3		4				9	L5 CO4 PO3
			5		6	7			
					8		-		
c.	Solve the Recurre	ence Rela	tion F_{n+2}	$=F_{n+1}+F_{n+1}$	for $n \ge 1$	20. Give	$en \ F_0 = 0, \ F_1 = 1.$	9	L3 CO4 PO4
	UNIT - V						18		
5 a.	. Define Isomorphism of two graphs. Prove that any simple connected graph with						h		
	<i>n</i> vertices all of degree 2 are isomorphic.						9	L3 CO5 PO2	
b.	Construct an optimal prefix code for the message MISSION SUCCESSFUL.						<i>.</i>		
	Indicate the code for the message.						9	L5 CO5 PO4	
c.	Define with exam	nple:							
	i) Rooted Tree								
	ii) Binary tree								
	iii) Isolated Vertex						0		
	iv) Pendant Verte	ex						9	L2 CO5 PO1
	v) Regular Graph	1							
	vi) Bipartite Gra	ph							
	vii) Complete Bi	partite gr	aph						

* * *

18