U.S.N

\square

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)
Third Semester, B.E. - Information Science and Engineering Semester End Examination; March - 2021

Discrete Mathematics and Applications

Time: 3 hrs
Max. Marks: 100

Course Outcomes

The Students will be able to:
CO1: Verify the correctness of an argument using propositional and predicate logic.
CO2: Demonstrate the ability to solve problems using counting techniques and Combinatorics in the context of discrete probability.
CO3: Solve problems involving recurrence relations.
CO4: Construct proofs using direct proof, proof by contraposition, proof by contradiction, proof by cases, and mathematical induction.
CO5: Ability to Explain and distinguish graphs and their properties.
Note: I) PART - A is compulsory. Two marks for each question.
II) PART - B: Answer any Two sub questions (from a, b, c) for Maximum of $\mathbf{1 8} \mathbf{~ m a r k s}$ from each unit.
Q. No.

Questions

I: PART - A
1 a. Prove that, for any proposition P and Q, the compound proposition is Tautology $[(7 q) \wedge(p \rightarrow q)] \rightarrow(\neg p)$
b. Prove by mathematical induction that for all positive integers $n \geq 1$ $1+2+3+4+\ldots .+n=\frac{1}{2} n(n+1)$

2 L5 CO2 PO2
c. If 5 colors are used to paint 26 doors, prove that atleast 6 doors will have the same colour.
d. Find the number of de-arrangements of 1, 2, 3, 4 .
$2 \quad \mathrm{~L} 3 \mathrm{CO} 4 \mathrm{PO} 2$
e. Draw a complete Bi-partite graph of $K_{2,3}$ and $K_{3,3}$.

2 L3 CO5 PO2
II: PART - B
UNIT - I
90
18
1 a. Prove the following logical equivalence without using Truth Table:
i) $P \rightarrow(q \rightarrow r) \Leftrightarrow(p \wedge q) \rightarrow r$
ii) $[\neg p \wedge(\neg q \wedge r)] \vee(q \wedge r) \vee(p \wedge r) \Leftrightarrow r$
b. Test the validity of the following argument
i)
$(\neg p \vee \neg q) \rightarrow(r \wedge s)$
$r \rightarrow t$
$\neg t$

$$
\begin{aligned}
& (\neg p \vee q) \rightarrow r \\
& r \rightarrow(s \vee t) \\
& \neg s \wedge \neg u \\
& \neg u \rightarrow \neg t
\end{aligned}
$$

$\therefore p$
c. Find whether the following argument is valid.

No engineering student of first or second semester studies logic
Anil is an Engineering student who studies logic
\therefore Anil is not in second semester

UNIT - II

2 a. Show that $2^{n}>n^{2}$ for all positive integers n greater than 4 .
b. i) A student taking a history examination is directed to answer any seven of 10 essay questions. There is no concern about order here, find the number of ways the student can answer the examination.
ii) If the student must answer three question from the first five and four questions from the last five. By the rule of product, find the number of ways the student can complete the examination.
iii) At Rydell High school, the gym teacher must select nine girls from the junior and senior classes for a volleyball team. If there are 28 juniors and 25 seniors, find the number of ways, this selection can be made.
c. Prove that, for positive integer n, t, the coefficient of $x_{1}^{n 1} x_{2}^{n 2} x_{3}^{n_{3}} \ldots x_{t}^{n_{t}}$ in the expansion of $\left(x_{1}+x_{2}+x_{3}+\ldots x_{i}\right)^{n}$ is $\frac{n!}{n_{1}!n_{2}!n_{3}!\ldots . n_{t}!}$
Where each n_{i} is an integer with $0 \leq n_{i} \leq n$, for all $1 \leq i \leq t$ and $n_{1}+n_{2}+n_{3}+\ldots+n_{t}=n$

UNIT - III

 $g(x)=c x+d$. What relationship must be satisfied by a, b, c, d if $g o f=f o g$b. Let $A=<1,2,3,4,5\}$ define a relation R on $A x A$ by $\left(x_{1}, y_{1}\right) R\left(x_{2}, y_{2}\right)$ if and only if $x_{1}+y_{1}=x_{2}+y_{2}$
i) Verify that R is an equivalence relation on $A \times A$
ii) Determine the equivalence classes $[(1,3)(2,4)]$ and $[(1,1)]$
iii) Determine the partition of $A x A$ induced by R
c. For $\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}$ the Hasse diagram for the $\operatorname{poset}(\mathrm{A}, \mathrm{R})$ is as shown below

9
L3 CO3 PO3
i) Determine the relation matrix for R
ii) Construct the digraph for R

UNIT - IV
4 a. Determine the number of positive integers x where $x \leq 9,999,999$ and the sum of the digits in x equal to 31 .
b. Find the rook polynomial for the board made up of the shaded square in the below figure

	1	2		
3		4		
	5		6	7
			8	

$9 \quad \mathrm{~L} 5 \mathrm{CO} 4 \mathrm{PO} 3$
$9 \quad \mathrm{~L} 3 \quad \mathrm{CO} 4 \mathrm{PO} 4$
UNIT - V
5 a. Define Isomorphism of two graphs. Prove that any simple connected graph with n vertices all of degree 2 are isomorphic.
b. Construct an optimal prefix code for the message MISSION SUCCESSFUL. Indicate the code for the message
c. Define with example:
i) Rooted Tree
ii) Binary tree
iii) Isolated Vertex
iv) Pendant Vertex
v) Regular Graph
vi) Bipartite Graph
vii) Complete Bipartite graph

