P1813	535			Pa	ge No.	1				
	U.S	S.N								
P.E.S. College of Engineering, Mandya - 571 401										
(An Autonomous Institution affiliated to VTU, Belagavi)										
Third Semester, B.E Information Science and Engineering										
Semester End Examination; March - 2021										
Computer Organization and Architecture Time: 3 hrs Max. Marks: 100										
Course Outcomes										
The Students will be able to: CO1: Analyze program execution.										
	<i>D2: Explain the basic input/output operations.</i>									
CO3: Develop the control sequence for a given instruction.										
	04: Design the memory system using various techniques. 05: Analyze different algorithms for performing arithmetic ope	rations and underst	and need f	or mult	ithread.					
<u>Note:</u> I) PART - A is compulsory. Two marks for each question.										
O No	<i>II) PART - B:</i> Answer any <u><i>Two</i></u> sub questions (from a, b, c) Questions	for Maximum of 18	<i>marks</i> from Marks			POs				
Q. No.	I: PART - A		10 Niarks	DLS	COS	rus				
1 a.	Solve for total execution time required for the machin	ie, with $S = 1.25$,		т 2	001	DO2				
	N = 200 and clock rate = 500 MHz.		2	L3	CO1	PO2				
b.	Define Exception.		2	L1	CO2	PO1				
c.	List the means of generating the control signals needed.		2	L1	CO3	PO1				
d.	Define memory latency.		2	L1	CO4	PO1				
e.	What is the formula used to find speedup of	the program in	2	L1	C05	DO1				
	Amdahl's law?		Z	LI	COJ	rui				
	II: PART - B		90							
1 .	UNIT - I	tion	18							
1 a.	Identify the steps needed to execute the machine instruc	uon,								
	Add R1, R2, R3									
	Assume that the instruction itself stored in the me	-								
	INSTR and this address is initially in register PC. The	first step might be	9	L3	CO1	PO2				
	expressed as,									
	* Transfer the contents of register PC to register MAR									
	Remember to include the steps needed to update the co									
	INSTR to INSTR + 1 so that next instruction is fetched.									
b.	List the different addressing modes and explain any	four addressing	9	L2	CO1	PO1				
	modes with example.		2		001	101				
с.	Define Overflow. Solve the following numbers in 6-bit binary form and									
	perform the operation and check whether there is overfl	ow or not.	9	L3	CO1	PO2				
	i) (+26) – (-30) ii) (-31) – (+29)		7	LJ	COI	102				
	iii) (-9) + (-7) iv) (+25) + (+16)									

	UNIT - II	18		-	
2 a.	Identify the value of register $R0$ after executing the instructions given				
	below with carry flag given the initial value of $C = 1$ and $R0 = 10011110$	9	L3	CO2	PO2
	i) LshiftL #3, R0 ii) LshiftR #3, R0 iii) RotateL # 3, R0	9	LJ	02	102
	iv) RotateLC #3, R0 v) RotateR # 3, R0 vi) RotateRC #3, R0				
b.	Define bus arbitration. Explain any one bus arbitration in detail.		L2	CO2	PO1
c.	Define Interrupts. Explain enabling and disabling of Interrupts.		L2	CO2	PO1
	UNIT - III				
3 a.	Develop the sequence of control steps required to perform the operation				
	of adding the contents of memory location NUM to register R1 and store	9	L3	CO3	PO2
	the result in <i>R1</i> .				
b.	Explain the organization of micro programmed control unit. Define the				
	following terms:	9	L2	CO3	PO1
	Microinstruction, Micro Routine, Control Word and Control Store.				
c.	Develop and explain the sequence of control steps required to perform		L3	CO3	PO2
	conditional branch instruction branch < 0 .		20	000	102
	UNIT - IV				
4 a.	Define static memories. Explain how static memory is implemented with	9	L2	CO4	PO1
	read and write operation?	-			
b.	With a timing diagram, explain a typical burst read of length four	9	L2	CO4	PO1
	in SDRAMs.	-			
c.	Explain different mapping functions used in cache.	9	L2	CO4	PO1
	UNIT - V	18			
5 a.	Apply bit-pair recoding of multipliers to perform the following:				
	i) -20×30	9	L3	CO5	PO2
	ii) -20×-30				
b.	Apply restoring algorithm to perform the operation 32/4.	9	L3	CO5	PO2
c.	Explain Flynn's taxonomy classification system.	9	L2	CO5	PO1

Page No... 2

P18IS35

* * *