U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Fifth Semester, B.E. - Information Science and Engineering Semester End Examination; Feb. - 2021 Operating System

Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:

- CO1: Outline the operating system concepts and its functionalities.
- CO2: Implementation of various CPU scheduling algorithms and process synchronization using programming languages.
- CO3: Identify deadlock Occurrence, deadlock recovery in various OS and outline memory management concepts.
- CO4: Compare page replacement algorithms in OS and understand fundamental file concepts.
- CO5: Discuss file system structure and implement disk scheduling algorithms.

Note: I) **PART -** A is compulsory. **Two** marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 marks from each unit.

Q. No.	Qu	estions	Marks	BLs	COs	POs
	I: P.	ART - A	10			
I a.	List the contents of PCB block.		2	L1	CO1	PO1
b.	Define Semaphores.		2	L1	CO2	PO1
c.	Define Deadlock.		2	L1	CO3	PO1
d.	Why lazy swapper is used in demand	d paging?	2	L2	CO4	PO1
e.	Expand FCFS, SSTF.		2	L1	CO5	PO1
	II : P	PART - B	90			
	UI	NIT - I	18			
1 a.	Define operating system and with r	neat sketch, explain the abstract view of	9	1.2	CO1	
	the components of computer system.	9	L2	COI	PO1	
b.	What is process? What are the sta	9	L2	CO1	PO1	
	diagram indicating the condition for					
c.	I. Define privileged instruction. W	rite which of the following instruction				
	below is privileged?					
	i) Change memory management r	registers				
	ii) Write the program counter					
	iii) Read the time-of-the day					
	iv) Set the time-of-the-day		9	L3	CO1	PO1
	II. For each of the following transit	ions between the process states, indicate				
	whether the transition is possib					
	thing that would cause it					
	i) Run→ready ii) R	Run→blocked				
	iii) Blocked→run iv) l	Run → terminated				

UNIT - II

18

2 a. Consider the process given below, find average turnaround time and average waiting time using Preemptive and Non-preemptive SJF algorithm and justify which is efficient.

Processes	Arrival Time	Burst Time		
\mathbf{P}_1	2	1		
P_2	1	5		
P ₃	4	1		
P ₄	0	6		
P ₅	2	3		

9 L3 CO2 PO2

b. Consider the processes given below, find average turnaround time and waiting time using Round robin scheduling algorithm with time Quantum = 2 ms and Time Quantum = 4 ms. Justify to what time quantum (whether it is 2ms or 4ms) algorithm is better with respect to context switching.

Processes	Arrival Time	Burst Time		
\mathbf{P}_1	0	4		
P_2	1	5		
P ₃	2	2		
P_4	3	1		
P ₅	4	6		
P ₆	6	3		

9 L3 CO2 PO2

c. Explain critical section, give the solution to it?

9 L2 CO2 PO1

UNIT - III

18

3 a. Explain the deadlock recovery methods.

- 9 L2 CO3 PO1
- b. Consider the following snapshot of resource allocation at time T_1 ;
 - i) Show the system is not deadlock by generating one safe sequence.
 - ii) At time T_2 , P_2 makes one additional request for instance of type C. Show whether the system is In deadlock state or not?

Process	Allocation			Request			Available			
	A	В	C	A	В	C	A	В	C	
P_0	0	1	0	0	0	0	0	0	0	
P ₁	2	0	0	2	0	2				
P ₂	3	0	3	0	0	0				
P ₃	2	1	1	1	0	0				
P ₄	0	0	2	0	0	2				

9 L3 CO3 PO2

P18I	S52		Page No 3
c.	With a neat schematic representation, explain the hardware required to support segmentation.	9	L2 CO3 PO1
	UNIT - IV	18	
4 a.	Consider the following page reference string:		
	2, 3, 2, 1, 5, 2, 4, 5, 3, 2, 3, 5	9	L3 CO4 PO2
	How many page faults would occur for the second chance LRU	9	L3 CO4 PO2
	approximation algorithm with percentage of probability of page fault?		
b.	Explain the file attributes and file operations.	9	L2 CO4 PO1
c.	Explain different types of directory structures.	9	L2 CO4 PO1
	UNIT - V	18	
5 a.	Explain different file allocation methods.	9	L2 CO5 PO1
b.	Given the following queue:		
	95, 180, 34, 119, 11, 123, 62, 64 with head initially at track 50 and ending at	9	L3 CO5 PO2
	track 199, calculate the number of moves using FCFS, SSTF and CLOOK.	9	L3 CO3 FO2
	Move towards 199.		
c.	Explain the structure and operations used to implement file	9	L2 CO5 PO1
	system operations.	J	12 003 101