Page No... 1

U.S.N

Fifth Semester, B.E. - Information Science and Engineering Semester End Examination; Feb. - 2021 Data Mining

Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:

CO1: Apply different pre-processing techniques for data cleaning.

CO2: Evaluate performance of algorithms for Association Rules.

CO3: Apply the different classification techniques.

CO4: Analyze different clustering algorithms.

CO5: Understand different data models used in data warehouse.

Note: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any Two sub questions (from a, b, c) for Maximum of 18 marks from each unit.

Q. No.			_	uestions PART - A				Marks 10	BLs	COs	POs
I a.	Define Data	Mining.						2	L1	CO1	PO1
b.	List two advantages of Apriori.					2	L1	CO2	PO1		
c.	Define split algorithm.					2	L1	CO3	PO1		
d.	List clustering analysis methods.					2	L1	CO4	PO1		
e.	List any two characteristics of OLAP codd's.					2	L1	CO5	PO1		
	II : PART - B						90				
				NIT - I				18		~~1	501
1 a.	Explain the various data mining process in detail.					9	L2	CO1	PO1		
b.	Construct a model for data mining process referring to Chapman description.					9	L4	CO1	PO1		
c.	Identify varie	ous sources	of errors in	data.				9	L3	CO1	PO2
			\mathbf{U}	NIT - II				18			
2 a.	Discuss the first part frequent itemsets parameters of Apriori algorithm.					9	L2	CO2	PO1		
b.	Summarize Apriori algor	the requirithm.	ired reaso	ons to i	mprove	the ef	ficiency of	9	L2	CO2	PO2
c.	Explain dynamic itemset counting with necessary example.						9	L2	CO2	PO1	
	UNIT - III						18				
3 a.	Evaluate the given frequency table by applying Naive Baye's algorithm.										
	Predict that if a fruit has the following properties and examine which type of										
	fruit it is. Given Fruit ={Yellow, Sweet, Long}										
		Fruit	Yellow	Sweet	Long	Total		9	L4	CO3	PO2
		Banana	350	450	0	650			2.	000	102

Fruit	Yellow	Sweet	Long	Total
Banana	350	450	0	650
Mango	400	300	350	400
Others	50	100	50	150
Total	800	850	400	1200

P18IS	S54				I	Page No 2	
		9	L2 CO3 PO	1			
	Outline the various steps of tree induction algorithm. List and brief the evaluation criteria for classification methods.						
c.	List and brief the evalu		r classification Γ	netnods.	9	L4 CO3 PO	2
			18				
4 a.	Categorize the taxonon	ny of cluster ana	alysis method.		9	L4 CO4 PO	3
b.	Solve the given san	mple data by	dividing into	two clusters using			
	<i>k</i> -means algorithm.						
		Height (H)	Weight (W)				
		185	72				
		170	56				
		168	60				
		179	68				
		182	72		9	L3 CO4 PO	2
		188	77				
		180	71				
		180	70				
		183	84				
		180	88				
		180	67				
		177	76				
c.	Explain the k-means m	9	L2 CO4 PO	1			
		18					
5 a.	Construct a ODS desi	9	1.6 CO5 DO	2			
	carry out.					L6 CO5 PO	3
b.	Explain the characteristics of OLAP systems.					L2 CO5 PO	2

L2 CO5 PO1

c. Classify the different multidimensional view and data cube for

university structure.