U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

First Semester, R.E., Semester End Examination: April - 2

First Semester, B.E. - Semester End Examination; April - 2021

Engineering Mathematics - I

(Common to all Branches)

Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:

- CO1: Apply the knowledge of calculus to solve problems related to polar curves and its applications in determining the bentness of a curve.
- CO2: Explain mean value theorems and evaluate the indeterminate form and power series using Taylors and Maclaurin's series.
- CO3: Differentiate the function of several variables differentiate the composite function. Evaluate the vector differentiation.
- CO4: Evaluate some standard integrals by applying reduction formula and solve application problems. Solve differential equations of first order and solve application problems in engineering field.

Note: I) **PART - A** is compulsory. **Two** marks for each question.

II) PART - B: Answer any Two sub questions (from a, b, c) for Maximum of 18 marks from each unit.

11	II) PART - B : Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 marks from each unit.								
Q. No.	Questions	Marks	BLs COs POs						
	I: PART - A	10							
I a.	Find the angle between radius vector and the tangent for the curve $r = a(1-\cos\theta)$.	2	L1 CO1 PO1						
b.	Evaluate $\lim_{x\to 0} x^2 \log x$.	2	L1 CO2 PO1						
c.	Find Div \vec{F} , where $\vec{F} = \nabla (x^3 + y^3 + z^3 - 3xyz)$.	2	L1 CO3 PO1						
d.	Evaluate $\int_{0}^{\pi/2} \sin^6 x \cos^2 x dx.$	2	L1 CO4 PO1						
e.	Solve: $(y^3 - 3x^2y)dx - (x^3 - 3xy^2)dy = 0.$	2	L1 CO4 PO1						
	II : PART - B	90							
	UNIT - I	18							
1 a.	 i) Find the pedal equation of ^{2a}/_r = (1+cos θ). ii) Show that the curves rⁿ = aⁿ cos nθ and rⁿ = bⁿ sin nθ intersect each other orthogonally. 	9	L2 CO1 PO2						
b.	Find the radius of curvature for the curve $y^2 = \frac{4a^2(2a-x)}{x}$, where the curve meets the <i>x</i> -axis.	9	L3 CO1 PO2						
c.	Find the evolute of the parabola $y^2 = 4ax$.	9	L3 CO1 PO2						
2 a.	i) State Lagrange's mean value theorem.	18							
	ii) Verify Cauchy's mean value theorem for the functions, e^x and e^{-x} in $[a,b]$.	9	L2 CO2 PO2						

Contd... 2

- i) State Taylor's series of f(x) about x = a upto fourth degree term.
- 9 L2 CO2 PO2

- ii) Obtain the Maclaurin's expansion of $\log(1+\sin x)$.
- Evaluate; i) $\lim_{x \to 1} \left| \frac{x}{x-1} \frac{1}{\log x} \right|$ ii) $\lim_{x \to 0} \left(\frac{\tan x}{x} \right)^{1/x}$

9 L2 CO2 PO2

UNIT - III

18

9

9

18

- 3 a. If $u = \tan^{-1} \left(\frac{x^3 + y^3}{x y} \right)$ show that,
 - i) $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \sin 2u$ ii) $x^2 \frac{\partial^2 u}{\partial x} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = \sin 4u \sin 2u$
 - Write the total derivative rule.

If u = f(x - y, y - z, z - x) show that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$.

9 L3 CO3 PO1

L2 CO3 PO2

L3 CO3 PO2

- i) Find the directional derivative of $\phi = x^2yz + 4xz^2$ at (1, -2, -1) in the direction of 2i - j - k.
 - ii) Show that the vector field,

 $\vec{F} = (x^2 - yz)i + (y^2 - zx)j + (z^2 - xy)k$ is irrotational.

UNIT - IV 18

- Obtain the reduction formula for $\int \sin^n x dx$ and hence $\int_{-\infty}^{\infty} \sin^n x dx$, where n 9 L2 CO4 PO2 is a positive integer.
 - b. Evaluate $\int_{0}^{\infty} e^{-ax} \frac{\sin x}{x} dx$ and hence evaluate $\int_{0}^{\infty} \frac{\sin x}{x} dx$.

9 L3 CO4 PO2

Trace the curve $r = a(1 + \cos \theta)$ (cardiode).

9 L3 CO4 PO2

5 a. i) Solve: $\left(1 + e^{\frac{x}{y}}\right) dx + e^{\frac{x}{y}} \left(1 - \frac{x}{y}\right) dy = 0.$

9 L2 CO4 PO1

- ii) Solve: y(xy+1) dx x(xy-1) dy = 0.
- b. i) Solve: $\frac{dy}{dx} + \frac{y}{x} = y^2 x$.

9 L2 CO4 PO2

- ii) Solve: $(xy^3 + y)dx + 2(x^2y^2 + x + y^4)dy = 0$.
- If the temperature of the air is 30°C and a metal ball cools from 100°C to 70°C in 15 minutes, find how long will it take for the metal ball to reach a L3 CO4 PO2 temperature of 40°C?