

Time: 3 hrs

The Students will be able to:

Course Outcomes

- CO1: Apply forward, backward difference formulae and central differences formulae in solving interpolationextrapolation problems in engineering field.
- CO2: Numerical differentiation and integration rules in solving engineering where the handlings of numerical methods are inevitable.
- CO3: Apply the knowledge of periodic function, Fourier series, complex Fourier series, Fourier sine/cosine series of a function valid in different periods. Analyze engineering problems arising in control theory/fluid flow phenomena using harmonic analysis.
- CO4: Understand complex/infinite Fourier transforms Fourier sine and Fourier cosine transforms with related properties. Analyze the engineering problems arising in signals and systems, digital signal processing using Fourier transform techniques. Define Z-transforms & find Z-transforms of standard functions to solve the specific problems by using properties of Z-transforms. Identify and solve difference equations arising in engineering applications using inverse Z-transforms techniques.
- CO5: Define Partial Differential Equations (PDE's), order, degree and formation of PDE's and, to solve PDE's by various methods of solution. Explain one - dimensional wave and heat equation and Laplace's equation and physical significance of their solutions to the problems selected from engineering field.

Note: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 marks from each unit.

Q. No.	o. Questions I : PART - A				Marks 10	BLs COs POs		
I a.	Construct the Newton's Backward difference table for the data given below,							
	X 2 4	6	8		2	L1 CO1 PO1		
	Y 10 96	196	350					
b.	Write the first derivative Newton's forward for	rmula ı	up to thir	d degree.	2	L1 CO2 PO1		
c.	Evaluate: $\int e^{ax} \cos bx dx$.				2	L1 CO3 PO1		
d.	Define Z-Transform of $u_{n.}$				2	L1 CO4 PO1		
e.	Solve by direct integration $\frac{\partial^2 z}{\partial x \partial y} = \cos x \cos y$.				2	L1 CO4 PO1		
	II : PART - I	B			90			
	UNIT - I				18			
1 a.	i) Define Extrapolation.							

Define Extrapolation.

ii) A survey conducted in a slum locality reveals the following information as classified below.

Income per day (Rs.)	Under 10	10 - 20	20 - 30	30 - 40	40 - 50
Number of persons	20	45	115	210	115

9 L2 CO1 PO1

Estimate the probable number of person in the income group 20 to 25.

P18MA31

c.

2 a.

b.

c.

3 a.

b.

c.

4

y

8

15

7

6

2

- b. i) Write a Lagrange's inverse interpolation formula for x = f(y).
 - ii) The following table gives the normal weights of babies during first eight months of life.

	Age (months)	0	2	5	8		9	L3 CO1 PO1
	Weight (pounds)	6	10	12	16			
Estimat	e the weight of the bal	by at the	age of s	even moi	nths usin	g Lagrange's		
interpol	ation formula.							
i) Write Ga	uss's forward interpol	ation for	rmula up	to 4 th de	gree terr	ns.		
ii) Use Stir	ling's formula to com	pute $u_{14.2}$	2 from th	e followi	ng:		9	L3 CO1 PO2
$u_{10} = 0$.240, $u_{12} = 0.281$, u_{14}	= 0.318,	$u_{16} = 0$	352, u ₁₈ =	= 0.384			
		UNIT	- II				18	
Find the n	naximum and minim	um valu	es of th	e functio	on $y = j$	f(x) from the		
following o	lata.						0	
	x 1	3	5	7	9		9	L1 CO2 PO1
	y 9	11	13	63	209			
i) Write the	e Trapezoidal rule for	n = 6.						
	-					0.6		
ii) Use Sir	npson's $\left(\frac{1}{3}\right)^{rd}$ rule to	obtain t	he appro	ximate v	value of	$\int_{0}^{\infty} e^{-x^2} dx$ by	9	L3 CO2 PO2
conside	ring 6 equal strips.					0		
	bole's rule for $n = 8$.							
I) WINCE DO								
	$\frac{1}{2}$							
ii) Evaluate	$\int_{0}^{1} \frac{x}{1+x^2} dx, \text{ by Wedd}$	lle's rule	taking s	seven ord	linates a	nd hence find	9	L3 CO2 PO2
ii) Evaluato log _e 2.	$\int_{0}^{1} \frac{x}{1+x^2} dx$, by Wedd	lle's rule	taking s	seven ord	linates a	nd hence find	9	L3 CO2 PO2
	$\int_{0}^{1} \frac{x}{1+x^2} dx$, by Wedd	lle's rule UNIT		seven orc	linates a	nd hence find	9 18	L3 CO2 PO2
log _e 2.		UNIT	- III					L3 CO2 PO2
<i>log_e</i> 2. Obtain the	Fourier series for th	UNIT e functio	- III					L3 CO2 PO2 L3 CO3 PO2
<i>log_e</i> 2. Obtain the		UNIT e functio	- III				18	
$log_e 2$. Obtain the deduce that	Fourier series for th	UNIT e functio	- III on $f(x)$	$=x-x^2$	in (-π,.		18	
<i>log_e</i> 2. Obtain the deduce that i) Obtain th	Fourier series for the t $\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{3^2}$ the complex form of the	UNIT e functio	- III on $f(x)$	$=x-x^2$	in (-π,.		18 9	L3 CO3 PO2
<i>log_e</i> 2. Obtain the deduce that i) Obtain th	Fourier series for th t $\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \dots$	UNIT e functio	- III on $f(x)$	$=x-x^2$	in (-π,.		18	
$log_e 2.$ Obtain the deduce that i) Obtain the $f(x) = \begin{cases} \\ \\ \\ \end{cases}$	Fourier series for the t $\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{3^2}$ the complex form of the	UNIT e functio e Fourier	- III on $f(x)$	$= x - x^2$ or the fur	in $(-\pi, .)$	$\pi)$ and hence	18 9	L3 CO3 PO2
$log_e 2.$ Obtain the deduce that i) Obtain th $f(x) = \begin{cases} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Fourier series for the the $\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{3^2}$ the complex form of the the in $-\pi < x < 0$ the in $0 < x < \pi$	UNIT e functio e Fourier	- III on $f(x)$ series for	$y = x - x^2$ or the fur Fourier se	in $(-\pi, .)$	π) and hence 0 < x < 1.	18 9	L3 CO3 PO2
$log_e 2.$ Obtain the deduce that i) Obtain th $f(x) = \begin{cases} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Fourier series for the t $\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{3^2}$ the complex form of the $f - k$ in $-\pi < x < 0$ k in $0 < x < \pi$ f(x) = 2x - 1 as the c as a Fourier series	UNIT e functio e Fourier	- III on $f(x)$ series for	$y = x - x^2$ or the fur Fourier se	in $(-\pi, .)$	π) and hence 0 < x < 1.	18 9 9	L3 CO3 PO2 L3 CO3 PO2
$log_e 2$. Obtain the deduce that i) Obtain th $f(x) = \begin{cases} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Fourier series for the t $\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{3^2}$ the complex form of the $f - k$ in $-\pi < x < 0$ k in $0 < x < \pi$ f(x) = 2x - 1 as the c as a Fourier series	UNIT e functio e Fourier	- III on $f(x)$ series for	$y = x - x^2$ or the fur Fourier se	in $(-\pi, .)$	π) and hence 0 < x < 1.	18 9	L3 CO3 PO2

Page No... 2

P18MA31

UNIT - IV

Page No... 3

18

9

L3 CO4 PO2

4 a. Find the Fourier Transform of $f(x) = \begin{cases} 1 - |x| & \text{in } |x| \le 1 \\ 0 & \text{in } |x| > 1 \end{cases}$ and hence evaluate $\int_{0}^{\infty} \frac{\sin^{2} t}{t^{2}} dt.$

b. Solve the integral equation
$$\int_{0}^{\infty} f(\theta) \cos \alpha \theta d\theta = \begin{cases} 1-a & 0 \le \alpha \le 1 \\ 0 & \alpha > 1 \end{cases}$$
 and hence
9 L3 CO4 PO2

evaluate,
$$\int_{0}^{\infty} \frac{\sin^2 t}{t^2} dt$$
.

c. i) Find the Z-transform of $(n+1)^2$.

ii) Solve by using Z-Transforms:
$$y_{n+1} + \frac{1}{4}y_n = \left(\frac{1}{4}\right)^n$$
, $y_0 = 0$.

5 a. i) Form the Partial differential equation by eliminating the arbitrary constants

for
$$2z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$
. 9 L1 CO4 PO1

ii) Form the Partial differential equation by eliminating the arbitrary function for $\varphi(xy+z^2, x+y+z)=0$.

b. i) Define homogeneous partial differential equation. ii) Solve: $x(y^2 - z^2)p + y(z^2 - x^2)q = z(x^2 - y^2)$. 9 L3 CO4 PO2

c. Obtain the various possible solutions of the two dimensional Laplace equations $u_{xx} + u_{yy} = 0$, by the method of separation of variables. 9 L3 CO4 PO2

* * *