U.S.N

\square

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)

Third Semester, B.E. - Semester End Examination; March - 2021

Transform Calculus, Fourier Series and Numerical Techniques
(Common to all Branches)
Time: 3 hrs
Max. Marks: 100

Course Outcomes

The Students will be able to:
CO1: Apply forward, backward difference formulae and central differences formulae in solving interpolationextrapolation problems in engineering field.
CO2: Numerical differentiation and integration rules in solving engineering where the handlings of numerical methods are inevitable.
CO3: Apply the knowledge of periodic function, Fourier series, complex Fourier series, Fourier sine/cosine series of a function valid in different periods. Analyze engineering problems arising in control theory/fluid flow phenomena using harmonic analysis.
CO4: Understand complex/infinite Fourier transforms Fourier sine and Fourier cosine transforms with related properties. Analyze the engineering problems arising in signals and systems, digital signal processing using Fourier transform techniques. Define Z-transforms\& find Z-transforms of standard functions to solve the specific problems by using properties of Z-transforms. Identify and solve difference equations arising in engineering applications using inverse Z-transforms techniques.
CO5: Define Partial Differential Equations (PDE's), order, degree and formation of PDE's and, to solve PDE's by various methods of solution. Explain one - dimensional wave and heat equation and Laplace's equation and physical significance of their solutions to the problems selected from engineering field.

Note: I) PART - A is compulsory. Two marks for each question.
II) PART - B: Answer any Two sub questions (from a, b, c) for Maximum of $\mathbf{1 8}$ marks from each unit.
Q. No.

Questions

I : PART - A

Marks BLs COs POs
10

I a. Construct the Newton's Backward difference table for the data given below,

X	2	4	6	8
Y	10	96	196	350

b. Write the first derivative Newton's forward formula up to third degree.

2 L1 CO2 PO1
c. Evaluate: $\int e^{a x} \cos b x d x$.

2 L1 CO3 PO1
d. Define Z-Transform of u_{n}.

L1 CO4 PO1
e. Solve by direct integration $\frac{\partial^{2} z}{\partial x \partial y}=\cos x \cos y$.

2 L1 CO4 PO1

II : PART - B
 90

UNIT - I
1 a. i) Define Extrapolation.
ii) A survey conducted in a slum locality reveals the following information as classified below.

Income per day (Rs.)	Under 10	$10-20$	$20-30$	$30-40$	$40-50$
Number of persons	20	45	115	210	115

9 L2 CO1 PO1

Estimate the probable number of person in the income group 20 to 25 .

P18MA31

b. i) Write a Lagrange's inverse interpolation formula for $x=f(y)$.
ii) The following table gives the normal weights of babies during first eight months of life.

Age (months)	0	2	5	8
Weight (pounds)	6	10	12	16

Estimate the weight of the baby at the age of seven months using Lagrange's interpolation formula.
c. i) Write Gauss's forward interpolation formula up to $4^{\text {th }}$ degree terms.
ii) Use Stirling's formula to compute $u_{14.2}$ from the following:

$$
u_{10}=0.240, u_{12}=0.281, u_{14}=0.318, u_{16}=0.352, u_{18}=0.384
$$

UNIT - II
2 a . Find the maximum and minimum values of the function $y=f(x)$ from the following data.

x	1	3	5	7	9
y	9	11	13	63	209

b. i) Write the Trapezoidal rule for $n=6$.
ii) Use Simpson's $\left(\frac{1}{3}\right)^{\text {rd }}$ rule to obtain the approximate value of $\int_{0}^{0.6} e^{-x^{2}} d x$ by
$9 \quad \mathrm{~L} 3 \mathrm{CO} 2 \mathrm{PO} 2$ considering 6 equal strips.
c. i) Write Boole's rule for $n=8$.
ii) Evaluate $\int_{0}^{1} \frac{x}{1+x^{2}} d x$, by Weddle's rule taking seven ordinates and hence find
$9 \quad \mathrm{~L} 3 \mathrm{CO} 2 \mathrm{PO} 2$ $\log _{e} 2$.

UNIT - III

3 a. Obtain the Fourier series for the function $f(x)=x-x^{2}$ in $(-\pi, \pi)$ and hence deduce that $\frac{\pi^{2}}{12}=\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-$ \qquad
b. i) Obtain the complex form of the Fourier series for the function.

$$
f(x)=\left\{\begin{array}{cl}
-k & \text { in }-\pi<x<0 \tag{9}\\
k & \text { in } \quad 0<x<\pi
\end{array}\right.
$$

L3 CO3 PO2
ii) Expand $f(x)=2 x-1$ as the cosine half range Fourier series in $0<x<1$.
c. Express y as a Fourier series up to the second harmonic given the following data.
$9 \quad \mathrm{~L} 3 \mathrm{CO} 3 \mathrm{PO} 2$

x	0	1	2	3	4	5
y	4	8	15	7	6	2

4 a. Find the Fourier Transform of $f(x)=\left\{\begin{array}{cl}1-|x| & \text { in }|x| \leq 1 \\ 0 & \text { in }|x|>1\end{array}\right.$ and hence evaluate $\int_{0}^{\infty} \frac{\sin ^{2} t}{t^{2}} d t$.
b. Solve the integral equation $\int_{0}^{\infty} f(\theta) \cos \alpha \theta d \theta=\left\{\begin{array}{cc}1-a & 0 \leq \alpha \leq 1 \\ 0 & \alpha>1\end{array}\right.$ and hence evaluate, $\int_{0}^{\infty} \frac{\sin ^{2} t}{t^{2}} d t$
c. i) Find the Z-transform of $(n+1)^{2}$.
ii) Solve by using Z-Transforms: $y_{n+1}+\frac{1}{4} y_{n}=\left(\frac{1}{4}\right)^{n}, y_{0}=0$.

UNIT - V
5 a. i) Form the Partial differential equation by eliminating the arbitrary constants for $2 z=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$.

9
L1 CO4 PO1
ii) Solve: $x\left(y^{2}-z^{2}\right) p+y\left(z^{2}-x^{2}\right) q=z\left(x^{2}-y^{2}\right)$.
c. Obtain the various possible solutions of the two dimensional Laplace equations $u_{x x}+u_{y y}=0$, by the method of separation of variables.

