\square
P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi) Third Semester, B.E. - Mechanical Engineering Semester End Examination; March - 2021 Fluid Mechanics

Time: 3 hrs
Max. Marks: 100

Course Outcomes

The Students will be able to:
CO1: Explain fluid properties like density, weight density, specific volume, specific gravity, viscosity and surface tension. Solve problems on viscosity and surface tension.
CO2: Derive Pascal's law and fundamental law of hydrostatics and Explain buoyancy and centre of buoyancy.
CO3: Describe the types of fluid flow and solve problems on continuity equation, Euler's equation of motion and Bernoulli's equation.
CO4: Explain boundary layer concept and define hydraulic gradient line and total energy line.
CO5: Derive Hagen-Poiseuille equation and apply dimensional analysis technique to obtain dimensionless relations.
Note: I) PART - A is compulsory. Two marks for each question.
II) PART - B: Answer any Two sub questions (from a, b, c) for Maximum of $\mathbf{1 8}$ marks from each unit.
Q. No.

Questions

Marks BL COs POs
I : PART - A
I a. What is specific gravity? How is related to density?
b. What is atmospheric pressure at a location where the barometric reading is 750 mmHg . Take the density of mercury to be $13,600 \mathrm{~kg} / \mathrm{m}^{3}$.
c. Define velocity potential function and stream function.

2
d. Define drag coefficient and lift coefficient.

2
e. Write the dimensions of dynamic viscosity and energy.

II : PART - B
 UNIT - I

2 L1 CO5 PO1

1 a. Distinguish between;
i) Gauge pressure and Absolute pressure
ii) Kinematic viscosity and Dynamic viscosity
iii) Newtonian and Non-Newtonian fluids
b. Define surface tension and vapour pressure.

A shaft 70 mm in diameter is being pushed at a speed of $400 \mathrm{~mm} / \mathrm{s}$ through a bearing sleeve of 70.2 mm in diameter and 250 mm long. The clearance, assumed uniform is filled with oil of kinematic viscosity $0.005 \mathrm{~m}^{3} / \mathrm{s}$ and specific gravity 0.9 . Find the force exerted by the oil on the shaft.
c. Derive an expression for the change in height ' h ' in a circular tube of a liquid with surface tension ' σ ' and contact angle ' θ '. Determine the gauge pressure inside a soap bubble of diameter, i) 0.2 cm and ii) 5 cm .
$9 \quad \mathrm{~L} 3 \quad \mathrm{CO} 1 \quad \mathrm{PO} 2$
$9 \quad \mathrm{~L} 3 \quad \mathrm{CO} 1 \quad \mathrm{PO} 2$ The surface tension of soap water is $0.025 \mathrm{~N} / \mathrm{m}$.

UNIT - II
2 a. With neat sketch, explain the following:
i) Measurement of negative pressure using U-tube manometer
ii) Stability criteria of immersed bodies
b. State the basic principle involved in measuring pressure and pressure difference using manometers and also calculate the pressure difference between A and B for the setup shown in Fig. Q.2.b.

Fig.Q.2.b
c. Calculate the resultant force on triangular window ABC as shown in Fig. Q.2.C and also locate its centre of pressure.

Fig.Q.2.c
UNIT - III
3 a. Distinguish between the following:
i) Uniform and Non-uniform flow
ii) Stream line and Path line
iii) Rotational and Irrational flow
b. Check whether the following relations satisfy the requirements for steady and irrotational flow:
i) $u=2 x+y, v=x-2 y$
ii) $\phi=\left(y^{2}-x^{2}\right)$
c. A Venturimeter having throat diameter of 150 mm is installed in a horizontal 300 mm diameter water main. The coefficient of discharge is 0.982 . Determine the difference in level of the mercury columns of the
$9 \quad$ L3 \quad CO3 \quad PO1
$9 \quad$ L3 \quad CO3 \quad PO1

PO1 differential manometer attached to the venturimeter if the discharge is $0.142 \mathrm{~m}^{3} / \mathrm{s}$.

UNIT - IV
4 a. Explain the concept of boundary layer and also derive an expression for displacement thickness.
b. An advertise board of $6 \mathrm{~m}^{2}$ is mounted on a pole 5 m height. The wind is blowing with velocity of $36 \mathrm{~km} / \mathrm{hr}$. Find the wind force on the board and the bending moment at the base of the pole. Take $C_{d}=1.35$ and $\rho=1.2 \mathrm{~kg} / \mathrm{m}^{3}$.
c. Lubricating oil at a velocity of $1 \mathrm{~m} / \mathrm{s}$ flow through a pipe of 100 mm diameter. Determine whether the flow is laminar or turbulent. Also determine the friction factor and the pressure drop over 10 m length. What should be the velocity for the flow to turn turbulent? Take density as $930 \mathrm{~kg} / \mathrm{m}^{3}$ and dynamic viscosity as 0.1 Pa.s.

UNIT - V

5 a . Show that for fully developed laminar flow of a fluid with viscosity ' μ ' flowing between horizontal fixed parallel plates kept at distance ' h ' m apart, the mean velocity \bar{U} is related to the pressure gradient $\frac{\partial p}{\partial x}$ by the relation $\bar{U}=-\frac{1}{12 \mu} \frac{\partial p}{\partial x} h^{2}$.
b. Prove that the frictional torque T of a disc of diameter D rotating at a speed N in a fluid of viscosity μ and density ρ in a turbulent flow is given by $T=\left(D^{5} N^{2} \rho\right) f\left[\frac{\mu}{D^{2} N \rho}\right]$.
c. A laminar flow is taking place in a pipe of diameter 200 mm . The maximum velocity is $1.5 \mathrm{~m} / \mathrm{s}$. Find the mean velocity and the radius at which this occurs. Also calculate the velocity at 4 cm from the wall of pipe.

