P18MF	233		Page	e No	1
	U.S.N				
A second s	P.E.S. College of Engineering, Mandya - 57 (An Autonomous Institution affiliated to VTU, Belagar Third Semester, B.E Mechanical Engineering Semester End Examination; March - 2021	vi)			
Time: 3	Fluid Mechanics	Max	x. Ma	rks: 10	0
	Course Outcomes				-
CO1: E te CO2: D CO3: D B CO4: E CO5: D	dents will be able to: Explain fluid properties like density, weight density, specific volume, specific gr ension. Solve problems on viscosity and surface tension. Perive Pascal's law and fundamental law of hydrostatics and Explain buoyancy an Describe the types of fluid flow and solve problems on continuity equation, Eule ernoulli's equation. Explain boundary layer concept and define hydraulic gradient line and total energy erive Hagen-Poiseuille equation and apply dimensional analysis technique to obta	d centre og er's equati) line.	f buoy on of	ancy. motion	and
) PART - A is compulsory. Two marks for each question.) PART - B : Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 mar	ks from ec	ich un	it.	
Q. No.	Questions	Marks	BL	COs	POs
	I : PART - A	10			
I a.	What is specific gravity? How is related to density?	2	L1	CO1	PO
b.	What is atmospheric pressure at a location where the barometric reading is 750 mmHg. Take the density of mercury to be $13,600 \text{ kg/m}^3$.	2	L1	CO2	PO
c.	Define velocity potential function and stream function.	2	L1	CO3	PO
d.	Define drag coefficient and lift coefficient.	2	L1	CO4	PO
e.	Write the dimensions of dynamic viscosity and energy.	2	L1	CO5	PO
	II : PART - B	90			
1 a.	UNIT - I Distinguish between;	18			
1 a.	 i) Gauge pressure and Absolute pressure ii) Kinematic viscosity and Dynamic viscosity iii) Newtonian and Non-Newtonian fluids 	9	L1	CO1	PO
b.	Define surface tension and vapour pressure. A shaft 70 mm in diameter is being pushed at a speed of 400 mm/s through a bearing sleeve of 70.2 mm in diameter and 250 mm long. The clearance, assumed uniform is filled with oil of kinematic viscosity 0.005 m^3 /s and specific gravity 0.9. Find the force exerted by the oil on the shaft.	9	L3	CO1	PO2
c.	Derive an expression for the change in height 'h' in a circular tube of a liquid with surface tension ' σ ' and contact angle ' θ '. Determine the gauge pressure inside a soap bubble of diameter, i) 0.2 cm and ii) 5 cm. The surface tension of soap water is 0.025 N/m.	9	L3	CO1	PO

9

L3

CO2

PO1

	UNIT - II	18			
2 a.	With neat sketch, explain the following:				
	i) Measurement of negative pressure using U-tube manometer	9	L2	CO2	PO2
	ii) Stability criteria of immersed bodies				
b.	State the basic principle involved in measuring pressure and pressure				
	difference using manometers and also calculate the pressure difference				
	between A and B for the setup shown in Fig. Q.2.b.				
	Oil (s.g. = 0.8)				

В

Water 1.50 m

 c. Calculate the resultant force on triangular window ABC as shown in Fig. Q.2.C and also locate its centre of pressure.

Water

P18ME33

25cm Seawater 9 CO2 PO2 L3 20°C $\gamma = 10.08 \text{ kN/m}^3$ 60 cm B. C Fig.Q.2.c **UNIT - III** 18 3 a. Distinguish between the following: i) Uniform and Non-uniform flow 9 L2 CO3 PO1 ii) Stream line and Path line iii) Rotational and Irrational flow b. Check whether the following relations satisfy the requirements for steady and irrotational flow: 9 L3 CO3 PO1 ii) $\phi = (y^2 - x^2)$ i) u = 2x + y, v = x - 2yc. A Venturimeter having throat diameter of 150 mm is installed in a horizontal 300 mm diameter water main. The coefficient of discharge is 0.982. Determine the difference in level of the mercury columns of the 9 L3 CO3 PO1 differential manometer attached to the venturimeter if the discharge is 0.142 m³/s.

P18ME33			Page No 3		
	UNIT - IV	18			
4 a.	Explain the concept of boundary layer and also derive an expression for displacement thickness.	9	L1	CO4	PO1
b.	An advertise board of 6 m ² is mounted on a pole 5 m height. The wind is blowing with velocity of 36 km/hr. Find the wind force on the board and the bending moment at the base of the pole. Take $C_d = 1.35$ and $\rho = 1.2$ kg/m ³ .	9	L3	CO4	PO1
c.	Lubricating oil at a velocity of 1 m/s flow through a pipe of 100 mm diameter. Determine whether the flow is laminar or turbulent. Also determine the friction factor and the pressure drop over 10 m length. What should be the velocity for the flow to turn turbulent? Take density as 930 kg/m ³ and dynamic viscosity as 0.1 Pa.s.	9	L3	CO4	PO1
	UNIT - V	18			
5 a.	Show that for fully developed laminar flow of a fluid with viscosity ' μ ' flowing between horizontal fixed parallel plates kept at distance 'h' m apart, the mean velocity \overline{U} is related to the pressure gradient $\frac{\partial p}{\partial x}$ by the	9	L2	CO5	PO1
	relation $\overline{U} = -\frac{1}{12\mu} \frac{\partial p}{\partial x} h^2$.				
b.	Prove that the frictional torque <i>T</i> of a disc of diameter <i>D</i> rotating at a speed <i>N</i> in a fluid of viscosity μ and density ρ in a turbulent flow is given by $T = (D^5 N^2 \rho) f \left[\frac{\mu}{D^2 N \rho} \right].$	9	L2	CO5	PO1
c.	A laminar flow is taking place in a pipe of diameter 200 mm. The maximum velocity is 1.5 m/s. Find the mean velocity and the radius at which this occurs. Also calculate the velocity at 4 cm from the wall of pipe.	9	L3	CO5	PO1

* * *