\square
P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi) Third Semester, B.E. - Mechanical Engineering Semester End Examination; March - 2021 Basic Thermodynamics

Time: 3 hrs
Max. Marks: 100

Course Outcomes

The Students will be able to:
CO1: Understand the basic concepts and definitions used in engineering thermodynamics.
CO2: Apply the first laws of thermodynamics and the concepts of thermodynamics to basic energy systems.
CO3: Understand the properties of pure substances.
CO4: Understanding of the second law of thermodynamics and analysis in different applications.
CO5: Calculate entropy for various simple real life systems.
Note: I) PART - A is compulsory. Two marks for each question.
II) PART - B: Answer any Two sub questions (from a, b, c) for Maximum of $\mathbf{1 8} \mathbf{~ m a r k s}$ from each unit.
III) Use of thermodynamic data handbook and steam tables are permitted.
Q. No.

Questions

I : PART - A
I a. What do you mean by thermodynamic equilibrium? What are the conditions necessary to establish thermodynamic equilibrium to a system?
b. Show that for an ideal gas, $C_{p}-C_{v}=R$.
c. Define sensible heat and latent heat.
d. What are the limitations of first law of thermodynamics? Also state the importance of second law of thermodynamics.
e. State Clausius theorem.

II : PART - B

UNIT - I
1 a. Distinguish between;
i) Establish a relationship between Celsius scale and Fahrenheit scale
ii) What are the similarities and dissimilarities between heat and work interactions?
b. It is proposed to construct a new scale with the value $5^{\circ} \mathrm{N}$ assigned to ice point and $20^{\circ} \mathrm{N}$ to steam point. The pressure of an ideal gas at constant volume is considered as a thermometric property. Set up a linear relationship between pressure and temperature in ${ }^{\circ} \mathrm{N}$ on a new scale. What is the Kelvin absolute zero on this scale?
Marks BLs COs POs10
2

L1 CO1
$9 \quad$ L1 CO1 PO1 $9 \quad \mathrm{~L} 2 \mathrm{CO} 1 \mathrm{PO} 3$
c. A quantity of gas is compressed in a piston cylinder from a volume of $0.8611 \mathrm{~m}^{3}$ to a final volume of $0.17212 \mathrm{~m}^{3}$. The pressure (in bar) as a function of volume $\left(\mathrm{m}^{3}\right)$ is given by, $P=\frac{0.86110}{V}-\frac{8.60673 \times 10^{-5}}{V^{2}}$
i) Find the amount of work done in kJ
ii) If the atmospheric pressure, i.e., 1 bar acting on the other side of piston is considered, find the net work done in kJ .

UNIT - II

2 a. What is a steady flow process? Derive the steady flow energy equation and state the significance of various terms involved.
b. Air initially at 60 kPa pressure, 800 K temperature and $0.1 \mathrm{~m}^{3}$ volume is compressed isothermally until the volume is halved, and subsequently the air is cooled at constant pressure till the volume is halved again. Sketch the process on a P-V plane and determine;
i) Total work interaction
ii) Total heat interaction

Assume ideal gas behavior for air and take $C_{P}=1.005 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$.
c. Air flows steadily at the rate of $0.5 \mathrm{~kg} / \mathrm{s}$ through an air compressor, entering at $7 \mathrm{~m} / \mathrm{s}$ velocity 100 kPa pressure and $0.95 \mathrm{~m}^{3} / \mathrm{kg}$ specific volume and leaving at $5 \mathrm{~m} / \mathrm{s}, 700 \mathrm{kPa}$ and $0.19 \mathrm{~m}^{3} / \mathrm{kg}$, respectively. The internal energy of the air leaving is $90 \mathrm{~kJ} / \mathrm{kg}$ greater than that of air entering. Cooling water in the compressor jackets absorbs heat from the air at the rate of 58 kW .
i) Compute the power input to the compressor
ii) Ratio of inlet pipe diameter to outlet pipe diameter

UNIT - III
3 a . Explain the phase transformation process of water from freezing state to superheated state using a T-V diagram.
b. Find the internal energy of 1 kg of steam at a pressure of 10 bar , when the condition of steam is?
i) Wet with a dryness fraction of 0.85
ii) Dry and saturated

L3 CO3
PO3
iii) Superheated, the degree of super heat being $50^{\circ} \mathrm{C}$

The specific heat of superheated steam at constant pressure is $2.01 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$.
c. A combined separating and throttling calorimeter was used to determine the dryness fraction of steam flowing through a steam main at a pressure of 9 bar. The pressure and temperature of steam after throttling were 1.25 bar and $115^{\circ} \mathrm{C}$, respectively. The mass of steam condensed after throttling was 2.2 kg and the mass of water collected in the separator was 0.20 kg . Estimate the dryness fraction of steam in the main. Take specific heat for superheated steam as $2.1 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$.

UNIT - IV

4 a. State Kelvin Plank and Clausius's statements of second law of thermodynamics and prove that they are equivalent to each other.
b. A reversible heat engine operates between two reservoirs at $600^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$. The engine drives a reversible refrigerator which operates between the same $40^{\circ} \mathrm{C}$ reservoir and a reservoir at $-18^{\circ} \mathrm{C}$. The heat transfer to the heat engine is 2100 K and there is a net work output of 370 kJ from the combined plant. Evaluate the heat transfer to the refrigerator and the net heat transfer to the $40^{\circ} \mathrm{C}$ reservoir.
c. Two Carnot engines are working in series between a source and a sink. The first engine receives heat from a reservoir at a temperature of 1000 K and rejects the waste heat to another reservoir at the temperature T_{2}. The second heat engine receives the heat energy rejected by the first engine. It converts some of energy into useful work and rejects the rest to a reservoir at temperature of 300 K .
i) If both engines deliver equal power, determine the efficiency of each engine
ii) If thermal efficiency of both engines are same, determine the intermediate temperature

Deduce for intermediate temperature for both the cases.

UNIT - V

5 a . State and prove Clausius inequality.
b. 1.5 kg of air at 1 bar 300 K is contained in a rigid insulated tank. During the process, 18 kJ of work is done on the gas through a paddle-wheel mechanism. Determine the final temperature, final pressure of air in the tank and change in entropy. Assume specific heats of air to be constant.
c. Briefly explain the following:
i) Principle of increase of entropy
ii) Clausius Theorem
9
L2 CO 5 PO 2 iii) Characteristic equation of gases

