U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Fifth Semester, B.E. - Mechanical Engineering Semester End Examination; Feb. - 2021

Problem Solving Skill for Competitive Examinations (Technical Skills - I)

Time: 2 hr. Max. Marks: 50

Course Outcomes

The Students will be able to:

CO1: Show the performance in competitive examinations.

CO2: Apply the technical skill to attend all kind of competitive examinations.

CO3: Develop the knowledge to solve real problems.

Note: All questions are compulsory and each question carries TWO marks.

Q. No. Questions BLs COs POs

- Maximum fluctuation of K.E in an engine has been calculated to be 2600 J.
 Assuming that the engine runs at an average speed of 200 rpm, the polar mass moment of inertia (in kg-m²) of a flywheel to keep the speed fluctuation within ± 0.5% of the average speed is _______
- L3 CO1 PO1,2

- (A) 0529.63
- (B) 569.63
- (C)600.30
- (D) 592.73
- 2. The angle between the direction of the follower motion and a normal to the pitch curve is called_____
- L1 CO1 PO1

- (A) Pitch angle
- (B) Cam angle
- (C) Pressure angle
- (D) Dwell angle
- 3. The state of stress at a point, for a body in plane stress, is shown in Figure below. If the minimum principal stress is 10 KPa, then the normal stress σ_y (in KPa) is

L3 CO1 PO1,2

- (A) 41.38
- (B) 18.38
- (C)72.36
- (D) 37.78
- 4. If the Young's modulus of elasticity of a material is twice it's modulus of rigidity, then the Poisson's ratio of the material is_____
- L2 CO1 PO1,2

- (A) $\mu = 1$
- (B) $\mu = 0$
- (C) $\mu = 1.23$
- (D) $\mu = 3$

5. Two steel truss members, AC and BC, each having cross sectional area of 100 mm², are subjected to a horizontal force F as shown in figure. All the joints are hinged. If F = 1 kN, the magnitude of the vertical reaction force developed at the point B in kN

L3 CO1 PO1.2

(A) 0.63

(B) 3.23

(C) 0.99

(D) 0.12

The flexural rigidity (EI) of a cantilever beam is assumed to be constant over the length of the beam shown in figure. If a load P and bending moment PL/2 are applied at the free end of the beam then the value of the slope at the free end

L3 CO2 PO1,2

(A) $\frac{PL^2}{EI}$ (B) $\frac{3PL^2}{2EI}$

 $(C) \frac{5 PL^2}{2 EL} \qquad (D) \frac{1 PL^2}{2 EL}$

7. A mass m₁ of 100 kg travelling with a uniform velocity of 5 m/s along a line collides with a stationary mass m₂ of 1000 kg. After the collision, both the masses travel together with the same velocity. The coefficient of restitution is____

L3 CO1 PO1,2

(A) 0.1

(B) 0.03

(C) 0.3

(D) 0

8. A solid circular shaft of 60 mm diameter transmits a torque of 1600 N-m. The value of maximum shear stress developed is_

L3 CO1 PO1,2

(A) 37.72 MPa

(B) 47.72 MPa

(C) 57.72 MPa

(D) 67.72 MPa

- 9. When can a Piezometer be not used for pressure measurement in pipes?
 - (A) The pressure difference is low

(B) The velocity is high

L1 CO2 PO1

- (C) The fluid in the pipe is a gas
- (D) The fluid in the pipe is highly viscous
- For laminar flow over a flat plate, the thickness of the boundary layer at a distance from the leading edge is found to be 5 mm. Thickness of the boundary layer at a downstream section which is at twice the distance of the previous section from the L3 CO2 PO1,2 leading edge will be_____
 - (A) 10 mm
- (B) $2\sqrt{5}$ mm
- (C) $5\sqrt{2}$ mm
- (D) 2.5 mm

P18M	IE591						Pag	e No	. 3
11.	A wooden rectangular	block of l	ength L is 1	made to	float in water with its	axis			
	vertical. The center of gravity of the floating body is 0.15 L above the center of						L2	CO2	DO1 2
	buoyancy. What is the S	pecific gra	vity of the w	ooden bl	ock?		L2	CO2	PO1,2
	(A) 0.6 (B) 0	.65	(C) 0.7		(D) 0.75				
12.	Navier-Stokes equation	represents	the conserva	ation of _			Т 1	CO2	DO1 0
	(A) Energy (B) N	Mass	(C) Press	sure	(D) Momentum		L1	CO2	PO1,2
13.	A 2 kW, 40 liter water	heater is s	witched on	for 20 m	in. The heat capacity of	p for			
	water is 4.2 kJ/kg°K. A	ssuming a	ll the electri	cal energ	y has gone into heatir	ig the	1.2	002	DO1
	water, increase of the wa	ater temper	ature in degr	ee centig	rade is		L3	CO2	POI
	(A) 2.7 (B) 4	.0	(C) 14.3		(D) 25.25				
14.	A Carnot engine receivi	ng heat at	400 K has	an efficie	ency of 24%. The COI	of a			
	Carnot refrigerator work	ing betwee	en the same t	emperatu	re limit is		L3	CO2	PO1,2
	(A) 1 (B) 2		(C) 3		(D) 4				
15.	Which one of the follow	ing thermo	odynamic pro	ocesses a	pproximates the steam	ing of			
	food in a pressure cooke	r?					L1	CO2	PO1
	(A) Isenthalpic (B)	Isobaric	(C) Isoc	horic	(D) isothermal				
16.	The heat absorbed or rej	ected durir	ng a polytrop	ic proces	s is equal to				
	$(A)\sqrt{((\gamma-n)/(\gamma-1))} \times wc$	ork done	(Β) ((γ-	-n)/ (γ–1))×work done		L2	CO2	PO1
	(C) $((\gamma-1)/(\gamma-n))\times$ work)2)×work done				
17.	Match List I with List II and select the correct								
	List I (Heat treatment)	List	II (Effects)						
	P. Annealing	1. Re	1. Refines grain structure						
	Q. Nitriding	2. Im	2. Improves the hardness of the whole mass				L1	G03	DO1
	R. Martempering	3. Inc	3. Increases surface hardness					CO3	POI
	S. Normalizing	4. Im	proves ducti	lity					
	(A) P-4, Q-3, R-2, S-1		(B) P-1, Q-3	3, R-4, S-	1				
	(C) P-4, Q-2, R-1, S-3		(D) P-2, Q-1	I, R-3, S-	4				
18.	A loose piece pattern is	used for							
	(A) Making intricate s	hapes whe	ere removal	of all po	ortions of the pattern	is not			
	possible						1.2	CO2	DO1
	(B) Large and axis sym	metrical ca	stings				L2	CO3	POI
	(C) Large scale continue	ous produc	tion in mach	ine mold	ings				
	(D) Intricate castings sp	lit at partin	ng line.						
19.	Light impurities in centr	ifugal cast	ings are						
	(A) Collected at outer so	urface		(B) Colle	ected at inner surface		L1	CO3	PO1
	(C) Mixed uniformly throughout the casting (D) Thrown away as slug								

P18ME591					Page No 4			
20.	For a ductile material, toughness is	the measure of						
	(A) Resistance to scratching							
	(B) Ability to absorb energy up to	fracture	L1	CO3	PO1			
	(C) Ability to absorb energy till ela							
	(D) Resistance to indentation							
21.	A 2 mm thick metal sheet is to be l							
	of 100 mm. If the stretch factor is 0							
	(A) 99 mm				DO1 2			
	(B) 100 mm				PO1,2			
	(C) 101 mm							
	(D) 102 mm							
22.	Match the correct combination for following metal working processes.							
	Process	Stress						
	P. Blanking	1. Tension						
	Q. Stretch forming	2. Compression						
	R. Coning	3. Shear						
	S. Deep drawing	4. Tension and compression	L1	CO3	PO1			
		5. Tension and shear						
	(A) P-2, Q-1, R-3, S-4							
	(B) P-3, Q-4, R-1, S-5							
	(C) P-5, Q-4, R-3, S-1							
	(D) P-3, Q-1, R-2, S-4							
23.	Plastic deformation is always followed by elastic recovery upon removal of the load.							
	In bending, this recovery is known	L1	CO3	PO1				
	(A) Wrinkling	(B) Spring back		003	101			
	(C) Lancing							
24.	The mechanism of material remova							
	(A) Melting and evaporation	(B) Melting and corrosion	L1	CO3	PO1			
	(C) Erosion and cavitations							
25.	Friction at the tool-chip interface can be reduced by							
	(A) Decreasing the rake angle	(B) Increasing the depth of cut	L1	CO3	PO1			
	(C) Decreasing the cutting speed	(D) Increasing the cutting speed						