	P.E.S. College of Engineering, Mandya - 571 401
×.	(An Autonomous Institution affiliated to VTU, Belagavi)
	First Semester, Master of Computer Applications (MCA) Semester End Examination; Jan 2020
	Discrete Mathematical Structures
-	Time: 3 hrsMax. Marks: 100
	<i>Note:</i> Answer <i>FIVE</i> full questions, selecting <i>ONE</i> full question from each unit.
1	
1 a.	How many numbers greater than 1000000 can be formed by using the digits 1, 2, 2, 2, 4, 4, 0?
b.	Find the number of permutations of the letter of the following words,
	i) PROGRESS ii) TOPOLOGY iii) ENGINEERING
c.	Find the coefficient of the following, $(1)^{10}$
	i) $x^3 y^3 z^3 w^1$ in the expansion of $\left(2x + \frac{y}{3} - z + w\right)^{10}$
	ii) $a^5b^{10}c^{15}$ in the expansion of $\left(\frac{a}{2}+4b+3c+d\right)^{30}$
2 a.	For any three sets A, B, C prove that $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
b.	In a sample of 100 logic chips. 23 have a defect D ₁ , 26 have a defect D ₂ , 30 have defect D ₃ ,
	7 have defects D_1 and D_2 , 8 have defective D_1 and D_3 , 10 have defectives D_2 and D_3 and 3 have
	all three defectives. Find the number of chips having, (i) at least one defective (ii) no defect.
c.	A fair die is tossed twice. Find the probability that,
	(i) Even numbers occur on both throws
	(ii) An even number occurs at least one throw.
	UNIT - II
3 a.	Verify that: $[p \rightarrow (q \rightarrow r)] \rightarrow [(p \rightarrow q) \rightarrow (p \rightarrow r)]$ is tautology.
b.	Prove: $\neg [\{(p \lor q) \land r\} \rightarrow \neg q] \Leftrightarrow q \land r$ is logical equivalence by using laws.
c.	Express symbolically and check validity of the given argument
	Ram will get driving license or
	He will join as a job driver
	If Ram do not get loan, Ram will join as a job driver
	Ram got DL, Therefore Ram will not join as a job driver.
4 a.	Define quantifiers with an example.
b.	Define rule of universal specification and generalization.
c.	Write down the following proposition in symbolic form and find its negation "For all integers n ,
	if <i>n</i> is not divisible by 2 then <i>n</i> is odd"

P18MCA12

Prove that the following argument is valid d.

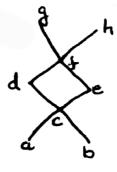
$$\forall x \left[p(x) \to q(x) \right] \\ \forall x \left[q(x) \to r(x) \right] \\ \frac{\neg r(c)}{\therefore \neg p(c)}$$

UNIT - III

- If *n* is a positive integer then prove that $1.2 + 2.3 + 3.4 + \dots + n(n+1) = \frac{n(n+1)(n+2)}{3}$ 5 a. 6 Define One-One function, Onto function and find the number of One-One and Onto functions b. 7 from a set of *m* elements to a set of *n* elements. Write the recursively relation for, c. i) $a_n - 4n + l$ $a_0 = l, n \ge l$ 7 ii) $a_n = 5a_{n-1}, n \ge 1, a_0 = 2.$ Show that if seven numbers are selected 1 to 12, then two of them will add upto 13. 6 a. 6 State pigeon hole principle. Find the least number of ways of choosing three different numbers b. 7 from 1 to 10 so that all choices have the same sum. 7
 - Define permutation function, Hashing function and characteristic function. c.

UNIT - IV

- Let A = $\{1, 2, 3, 4, 6\}$ and R be a relation on A defined by a R b iff a is a multiple of b represent 7 a. 6 *R* as a set of ordered pairs. Draw the diagraph and matrix representation of *R*.
 - Define partially ordered set and draw the Hasse diagram of all positive divisors of 36. b.
 - Prove that the Relation $R = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 3), (3, 3), (4, 4)\}$ is an equivalence c. 7 relation defined on the set $A = \{1, 2, 3, 4\}$. Also determine the partition induced.
- 8 a. Consider the Hasse diagram of a poset (A, R) given below,



6

7

If $B = \{c, d, e\}$ find, i) All upper bounds of B ii) All lower bounds of B iii) The LUB of B iv) The GLB of B

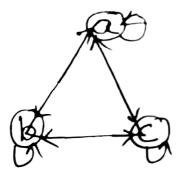
Contd...3

P18MCA12

10

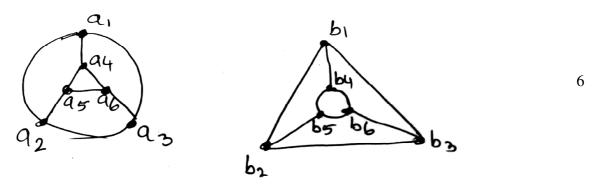
Page No... 3

- b. Draw four graphs that represent a lattice with valid reason.
- c. A relation R on the set {a, b, c} is represented by the diagraph below. Write *R* and prove that *R* is an equivalence relation.



UNIT - V

9 a. Show that the graphs are isomorphic,



b.	Write short note on Konigsberg bridge problem related to origin of graph theory.	7
c.	Prove that "A graph with n vertices is a tree if it is connected, posses $(n-1)$ edges and	7
	conversely".	/
a.	Define Rooted tree, M-ary tree and Balanced tree with an example for each.	6
b.	Construct an optimal prefix code for the letters of the word ENGINEERING. Hence deduce the	7
	code for this word.	/
c.	Define minimal spanning tree. Write an algorithm to find minimal spanning tree using	7
	Krushkal's algorithm.	/

* * *

7