U.S.N

\square

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)
 First Semester, M.Tech. - Civil Engineering (MCAD)
 Semester End Examination; April / May -2021
 Computational Structural Mechanics and FEM

Time: 3 hrs

Course Outcomes

The Students will be able to:
CO1: Analyze and find the complexity of the given problem.
CO2: Design efficient algorithm using Divide-and-Conquer Strategy.
CO3: Design and analyze algorithms to optimization problems.
CO4: Compute optimal solution for the problem using approximation algorithms.
CO5: Apply randomized algorithms for the given problem.
Note: I) Answer any FIVE full questions, selecting ONE full question from each unit.
II) Any THREE units will have internal choice and remaining TWO unit questions are compulsory.
III) Each unit carries 20 marks.
IV) Missing data, if any, may suitably be assumed.
Q. No.
UNIT - I
Marks
BLs
COs
POs

1a. Analyze the pin jointed truss shown in Fig. 1(a). Using direct stiffness method, determine displacement of joint 1 and forces in members. Take $A=1000 \mathrm{~mm}^{2}, E=3 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.

Fig. $1(a)$
OR
1d. What are the difference between stiffness and flexibility method?
1e. The top and bottom surfaces of the continuous beam as shown in Fig.1(e) are heated $20^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$ respectively. Compute the displacement and element stress resultant. Using direct stiffness approach. Take $\mathrm{E}=200 \mathrm{GPa}, \alpha=1.2 \times 10^{-5} /{ }^{\circ} \mathrm{C}$

UNIT - II

2 a. Determine the member forces for the continuous beam shown in Fig. 2(a). Using direct stiffness method. Draw BMD and SFD. Take EI = constant.

L3 CO 2
PO3

OR

3 d . Discuss briefly the various steps of finite element formation.
3 e. Explain briefly with example;
i) Higher order elements and Lower order element
ii) Natural coordinate and Area coordinate

UNIT - IV
4 a. Derive the shape function $[\mathrm{N}]$, strain displacement matrix [B] and element stiffness matrix [k] for a three noded one dimensional bar element with natural coordinate system as shown in Fig. 4(a).

L3 $\quad \mathrm{CO} 4 \quad \mathrm{PO} 2$

L3 $\quad \mathrm{CO} 4 \quad \mathrm{PO} 2$

4 e. Evaluate the shaper function for the CST element as shown in Fig. 4(e)
$p(x, y)=p(5,10)$.

$6 \quad \mathrm{~L} 3 \quad \mathrm{CO} 4 \quad \mathrm{PO} 2$

Fig. $A(e)$
UNIT - V
5 a. Derive the shape function for the two noded Euler Bernoulli beam
element and plot their shapes.
$12 \quad \mathrm{~L} 3 \quad \mathrm{CO} 4 \quad \mathrm{PO} 2$
5 b. Evaluate the following integral, using Gauss two sampling point formula and verify the exact value.
$I=\int_{0}^{1} \frac{1}{\left(1+x^{2}\right)} d x$

