U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

First Semester, M. Tech - Computer Science and Engineering (MCSE) Semester End Examination; April / May -2021 Advanced Algorithms

Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:

- CO1: Analyze and find the complexity of the given problem.
- CO2: Design efficient algorithm using Divide-and-Conquer Strategy.
- CO3: Design and analyze algorithms to optimization problems.
- CO4: Compute optimal solution for the problem using approximation algorithms.
- CO5: Apply randomized algorithms for the given problem.

Note: I) Answer any FIVE full questions, selecting ONE full question from each unit.

II) Any THREE units will have internal choice and remaining TWO unit questions are compulsory.

III) Each unit carries 20 marks.

1	II) Each unit carries 2	0 mar	ks.										
Q. No.				1	UNIT	- I				Marks	BLs	COs	POs
1a.	Write a greedy algo	rithm	to g	enera	ate an o	optim	al 2-v	vay m	erge tree. Apply the	10	L2	CO1	DO1
	algorithm on sorted	lists v	with	leng	th 2, 3,	5,7,1	1 and	113.		10	L2	COI	101
b.	Discuss minimum c	ycle ł	oasis	prol	blem so	olved	by g	reedy	algorithm. Illustrate	10	100	CO1	DO1
	the process of finding	ng min	nimu	ım cy	ycle ba	sis fo	r an t	ındire	cted graph.	10	L2,3	CO1	POI
				τ	U NIT -	II							
2 a.	Discuss Voronoi di	iagran	n alg	goritl	nm cor	ıstruc	ted u	sing l	hyper plane method	10		G02	
	by applying divide a	and co	onqu	er stı	rategy.					10	L2	CO2	
b.	Apply hill climbing	g stra	tegy	to	find go	oal st	ate f	rom i	nitial state to solve				
	8-puzzle problem.												
		2	8	3		1	2	3					
		1		4		7	8	4		10	L3	CO2	PO2
		7	6	5			6	5					
		Ir	 nitial			G	oal st	ate					
					OR								
2 d.	Discuss channel rou	ıting r	orobl	em s		bv A³	algo	rithm	with an illustration.	10	L2	CO2	PO2
e.		0 1				•	•		spaces. Derive an				
	algorithm to efficien	_	•						-	10	L2	CO2	PO2
	argorium to efficien	1017 11	110 11		J NIT -		. u g1	on se	t or points.				
3 a.	Write an algorithm	to f	ind				ment	usin	g prune and search				
J a.	algorithm.	1 10 1	1110	11	Gillanc	,, CIC	1110111	usili	5 prone and search	10	L2	CO3	PO2
	argoriumi.												

b. Consider four resources and three projects and profit matrix

Resources

		1	2	3	4
Projects	1	6	8	8	10
Trojects	2	5	11	16	17
	3	1	4	5	6

10 L4 CO3 PO3

Solve the above resource allocation problem by using dynamic programming method.

OR

Write prune and search algorithm to solve 2-variable linear programming 10 CO₃ PO₂ L2 problem. e. Apply longest common subsequence algorithm for, a a d e 10 L3 CO₃ PO₁ d c a a ce c**UNIT-IV** 10 Write an approximation algorithm for the rectilinear *m*-centre problem. L2 CO₄ PO₂ b. Write an approximation algorithm for the Bin packing problem. 10 L2 CO₄ PO₁

UNIT - V

Discuss how randomized algorithm can be utilized to solve the closest pair

5 a.

10 L2 CO₅ PO₃ problem? Discuss online *k*-server problem solved by greedy technique. 10 CO₅ PO₃ b. L2 OR Discuss randomized algorithm to test whether a given number is prime or d. 10 L2 CO₅ PO₂ not. e. Discuss online Euclidean spanning tree problem solved by greedy method. 10 L2 CO₅ PO₃

* * * *