U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

First Semester, M. Tech - VLSI Design and Embedded System (MECE) Semester End Examination; April / May - 2021 CMOS VLSI Design

Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:

- CO1: To acquire the knowledge of MOSFETs Characteristics, Fabrication Process, Combinational, sequential, dynamic circuits, Semiconductor Memories.
- CO2: To Discuss the Techniques to estimate the delay and Power in MOSFETs.
- CO3: To design combinational, sequential and Dynamic logic circuits based on CMOS for the given specifications.
- CO4: To Analyse the issues, challenges, models, methodologies in CMOS Fabrication Process.

Note: I) Answer any FIVE full questions, selecting ONE full question from each unit.

- II) Any THREE units will have internal choice and remaining TWO unit questions are compulsory.
- III) Each unit carries 20 marks.

Q. No.	UNIT – I	Marks	BL	COs	POs	
1 a.	Derive the expression for I _{ds} of long channel MOSFET in different	10	1.2	CO1	DO5	
	regions.	10	L2	CO1	POS	
b.	Explain the following second order affects in MOSFET:					
	i) Mobility degradation and Velocity saturation	10				
	ii) Channel length modulation		L4	CO4	PO3,5	
	iii) Body effect					
OR						
1 d.	Explain the DC characteristics of the CMOS inverter with different		1.0	CO1	DO5	
	regions of operation.	10	L2	CO1	POS	
e.	Derive an expression for NM _L and NM _H .	5	L2	CO1	PO5	
f.	Discuss Photolithography process in CMOS fabrication.	5	L2	CO1	PO5	
	UNIT - II					
2 a.	Discuss the Linear delay model, Logic effort and Parasitic delay.	10	L3	CO2	PO3,5	
b.	Explain the equivalent RC circuits of an inverter and transient response			002	DO2 7	
	of first order RC system.	10	L3	CO2	PO3,5	
	OR					
d.	Explain activity factor of dynamic power in MOSFETs.	10	L3	CO2	PO3,5	
e.	Discuss static source in MOSFETs.	10	L3	CO2	PO3,5	
UNIT - III						
3 a.	Design the function $F = \overline{A + BC}$ using static CMOS and domino logic.	10	L6	CO3	PO3,5	
	Design 2-input NAND gate using cascade voltage switch logic and					
	dynamic circuit with footed and unfooted dynamic gates.	10	L6	CO3	PO3,5	

P20MECE11			Page No 2			
	UNIT - IV					
4 a.	Develop CMOS implementation of a falling edge triggered master slave	10	L6 CO3 PO3,5			
	based D latch and briefly explain.	10	L0 CO3 1 O3,3			
b.	Explain sequencing methods in sequencing static circuits.	10	L2 CO1 PO3,5			
	OR					
4 d.	What is pass transistor? Describe how logic '0' transfer place in pass	10	L3 CO1 PO5			
	transistor.	10	L3 CO1 FO3			
e.	Explain the operation of voltage bootstrapping with suitable circuit and	10	L3 CO1 PO5			
	equation.	10	L3 CO1 103			
UNIT - V						
5 a.	What is Latch up in bulk CMOS devices? Explain with relevant	12	L4 CO4 PO3,5			
	diagram. Suggest method to prevent Latch up.		L4 CO4 PO3,3			

L3 CO1 PO5

b. Explain 6T SRAM cell using CMOS.