U.S.N					

Max. Marks: 100

Time: 3 hrs

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)
Eighth Semester, B.E. - Automobile Engineering
Semester End Examination; July - 2021
Computer Integrated Manufacturing

Note: Answer any **FIVE** full questions. What is automation? Explain different types of automation. 8 Explain the following terms: b. i) Manufacturing lead time 6 ii) Production rate iii) Production capacity A lathe in an industry is used for 60 hrs/week, which is its full capacity. Its production rate is 30 units/hr. However, due to a lower demand, the lathe was kept idle for some time and only 6 1500 units were produced. Determine the production capacity of the machine tool and its utilization during the low demand week. 9 2 a. Explain the various methods of work part transport in an automated flow line. With the aid of sketches, explain any two rotary transfer mechanisms. 6 A rotary work table is indexed by a Geneva wheel mechanism. The Geneva wheel has 6 slots and the driver rotates at 15 rpm. Determine the cycle time, dwell (Processing) time and the 5 time loss in indexing operation. Enumerate the objectives of automated flow lines. 8 3 a. 4 Discuss the reasons for implementing buffer storage. A 10-static transfer line has ideal cycle time of 45 sec. The frequency of line stops is 0.08 stops/cycle, when a line stop occurs, it takes an average of 5 min to repair the problem. Parts are not removed from the workstations during the down time. The different cost elements associated are: Raw work part cost = Rs. 60/pc8

Determine:

i) Average production rate in pc/hr

Cost of disposable tooling = Rs. 6/pc

Line operating cost = Rs. 800/hr

- ii) Line efficiency
- iii) Proportion of downtime
- iv) Average cost per piece
- 4 a. Explain the upper bound approach and lower bound approach in analyzing transfer lines, without storage buffer.
- 8

b. Discuss the steps in assembly line balancing.

P17AU824 Page No... 2

c.	A product with total work content time of 47.5 min is to be assembled on a manual assembly	
	line. The production rate required is 30 units per hour. The manning level is expected to be	
	1.25, proportion uptime is 0.95, and repositioning time is 6 sec. Determine;	
	i) Cycle time	8
	ii) Ideal minimum member of workstations	
	iii) If the ideal number in (ii) is achieved, how many workstations are required?	
	iv) Station or service time.	
5 a.	Discuss the principles used in product design to facilitate automated assembly.	6
b.	With neat figures, explain the elements of part delivery system.	8
c.	Discuss the functions that are performed while operating AGVS.	6
6 a.	Discuss the different types of material handling equipments.	10
b.	Explain the analysis of Multi-station assembly systems.	10
7 a.	With the help of a block diagram, explain the working of retrieval type CAPP system. How	10
	is it different from generative CAPP approach?	10
b.	With the help of a block diagram of structure of MRP system, explain the working of	
	material requirement planning system. Also discuss the benefits of computerized	10
	MRP system.	
8 a.	Explain minimum rational work elements and procedense constraints.	6
b.	Explain Kilbridge and Wester's method.	6
c.	Explain the following:	
	i) Material requirement planning	8
	ii) Capacity planning	
9 a.	Discuss the basic components of NC system.	8
b.	Sketch and explain, the common robot configurations.	12
10 a.	Describe salient features of CNC systems.	8
b.	Illustrate six degree of freedom of a polar robot with the help of a neat sketch.	9
c.	Discuss the robot applications in ARC welding.	3