Page No... 1

Max. Marks: 100

	U.S.N
	P.E.S. College of Engineering, Mandya - 571 401
	(An Autonomous Institution affiliated to VTU, Belagavi)
Column of Excellent	Eighth Semester, B.E Civil Engineering
	Semester End Examination; July - 2021
	RCC and Steel Structural Design

Time: 3 hrs

Note: i) Answer any TWO full questions.

ii) Use IS 456-2000, SP-16 and IS 800-2007, steel tables are permitted. iii) Missing data, if any, may be suitably assumed.

 Design a RCC cantilever retaining wall to retain earth embankment 4.5 m high above ground level. The unit weight of earth is 18 kN/m³ and angle of repose is 30°. The embankment is horizontal at its top. The SBC of soil is 200 kN/m³, coefficient of friction between soil and concrete is 0.5. Use M20 concrete and Fe415 steel.

Draw the following to a suitable scale and show reinforcement details:

i) Cross section of retaining wall

ii) Longitudinal section of stem and base slab

Two reinforced concrete column of size 400 mm × 400 mm is to carry a load of 1000 kN each inclusive of the self weight. Design a combined footing having central beam joining the columns. The center-to-center of column is 4.0 m. The SBC of soil is 150 kN/m². Use M20 concrete and Fe415 steel.

Draw the following to a suitable scale;

i) Plan of the footing showing reinforcement details

ii) Longitudinal and cross section of footing showing reinforcement

3. Design a welded plate girder for an effective span of 18 m to support an udl of 60 kN/m addition to a pair of point loads of magnitude 600 kN each at one-third span. Design the web and flange plates, end bearing stiffness and weld connection, check for moment capacity and shear capacity.

Draw the following to a suitable scale;

i) Cross section of plate girder

- ii) Half elevation and Half plan of welded plate girder
- 4. Design the roof truss as shown in Fig. Q(4). The forces include in various member along its nature, design the end connections using welded.

Draw to a suitable scale the following;

i) Halt Elevation of the truss

ii) Enlarged views of joints L₀ connection details at the joints

Assume reaction at support 13 kN and $f_y = 250$ MPa

50

50

T.1.	$\mathbf{O}(\mathbf{A})$
FIQ.	()(4)
I'IZ.	$\mathbf{U}(\mathbf{T})$

Member	Design Tensile load kN	Design Compression load kN
L_0U_1	35.1	26.1
L ₀ L ₁	22.35	28.05
L ₁ L ₂	17.85	19.2
L ₂ L ₃	13.65	10.00
U1 U2	41.70	26.1
U ₂ U ₃	37.35	21.0
U1 L1	9.96	5.26
U ₂ L ₂	14.85	7.95
U ₃ L ₂	9.00	17.41
U ₂ L ₁	7.00	13.40

* * * *