P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)
 Eighth Semester, B.E. - Civil Engineering
 Semester End Examination; July - 2021
 RCC and Steel Structural Design

Time: 3 hrs
Note: i) Answer any TWO full questions.
ii) Use IS 456-2000, SP-16 and IS 800-2007, steel tables are permitted.
iii) Missing data, if any, may be suitably assumed.

1. Design a RCC cantilever retaining wall to retain earth embankment 4.5 m high above ground level. The unit weight of earth is $18 \mathrm{kN} / \mathrm{m}^{3}$ and angle of repose is 30°. The embankment is horizontal at its top. The SBC of soil is $200 \mathrm{kN} / \mathrm{m}^{3}$, coefficient of friction between soil and concrete is 0.5 . Use M20 concrete and Fe415 steel.

Draw the following to a suitable scale and show reinforcement details:
i) Cross section of retaining wall
ii) Longitudinal section of stem and base slab
2. Two reinforced concrete column of size $400 \mathrm{~mm} \times 400 \mathrm{~mm}$ is to carry a load of 1000 kN each inclusive of the self weight. Design a combined footing having central beam joining the columns. The center-to-center of column is 4.0 m . The SBC of soil is $150 \mathrm{kN} / \mathrm{m}^{2}$. Use M20 concrete and Fe 415 steel.

Draw the following to a suitable scale;
i) Plan of the footing showing reinforcement details
ii) Longitudinal and cross section of footing showing reinforcement
3. Design a welded plate girder for an effective span of 18 m to support an udl of $60 \mathrm{kN} / \mathrm{m}$ addition to a pair of point loads of magnitude 600 kN each at one-third span. Design the web and flange plates, end bearing stiffness and weld connection, check for moment capacity and shear capacity.

Draw the following to a suitable scale;
i) Cross section of plate girder
ii) Half elevation and Half plan of welded plate girder
4. Design the roof truss as shown in Fig. $\mathrm{Q}(4)$. The forces include in various member along its nature, design the end connections using welded.
Draw to a suitable scale the following;
i) Halt Elevation of the truss
ii) Enlarged views of joints Lo connection details at the joints

Assume reaction at support 13 kN and $f_{y}=250 \mathrm{MPa}$

Fig. Q(4)

Member	Design Tensile load kN	Design Compression load kN
$\mathrm{L}_{0} \mathrm{U}_{1}$	35.1	26.1
$\mathrm{~L}_{0} \mathrm{~L}_{1}$	22.35	28.05
$\mathrm{~L}_{1} \mathrm{~L}_{2}$	17.85	19.2
$\mathrm{~L}_{2} \mathrm{~L}_{3}$	13.65	10.00
$\mathrm{U}_{1} \mathrm{U}_{2}$	41.70	26.1
$\mathrm{U}_{2} \mathrm{U}_{3}$	37.35	21.0
$\mathrm{U}_{1} \mathrm{~L}_{1}$	9.96	5.26
$\mathrm{U}_{2} \mathrm{~L}_{2}$	14.85	7.95
$\mathrm{U}_{3} \mathrm{~L}_{2}$	9.00	17.41
$\mathrm{U}_{2} \mathrm{~L}_{1}$	7.00	13.40

