P18MCSE142 Page No... 1

U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

First Semester, M. Tech - Computer Science and Engineering (MCSE) Semester End Examination; Jan. -2020 **Advances in Data Mining**

Time: 3 hrs Max. Marks: 100

Note: Answer FIVE full questions selecting ONE full question from each unit

	Note : Answer FIVE full questions, select	ting O	N E Jun quesm	on from each unii.	
		U	NIT - I		
1 a.	What is data mining? Discuss the majo	r issue	s in data mini	ng.	10
b.	Explain the different kinds of data and	patteri	ns can be mine	ed.	10
2 a.	List and explain OLAP operations that	can be	e performed or	n multi dimensional data.	10
b.	What is a data warehouse? Discuss the	benefi	its of impleme	ntation of a data warehouse.	10
		Ul	NIT - II		
3 a.	Illustrate the frequent itemset generation	on usin	g Apriori algo	rithm.	10
b.	Construct FP tree for the following data	a whic	h has five tran	sactions. Explain in detail.	
	7	TID	Item		
		1	{a, b}		
		2	{b, c, d}		10
		3	$\{a, c, d, e\}$		
		4	{a, d, e}		
		5	{a, b, c}		
4 a.	Explain with examples, how clustering	and n	earest neighbo	or are used for prediction?	10
b.	Explain in brief for estimating predicti	ion acc	curacy of class	sification methods and its improving	

accuracy of classification methods.

10

UNIT - III

Explain different types of clustering with examples.

10

10

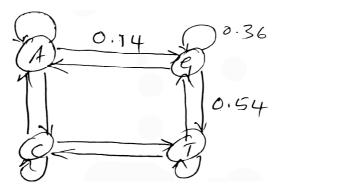
Explain the K-means algorithm with example.

10

Discuss the partitioning and hierarchical clustering methods with examples. 6 a.

10

Explain the density based outlier detection with example.


UNIT - IV

- Explain the following: 7 a.
 - i) Time series data
 - ii) Histograms

10

- iii) Spatial data
- iv) Sketches
- v) Random sampling

b. Explain Markov chain model and calculate how probable is X in the given below model for CPG islands where the states of the model are A, G, G and T.

8 a. Explain trend analysis with all its components.

b. Discuss how mining of sequence patterns in biological data can be achieved?

UNIT - V

9 a. Explain basic measures for text retrieval. Calculate the TF-IDF value of a term in a document for t₄ in documents d₅ in the given term frequency matrix.

document / term	t_1	t_2	t_3	t ₄	t_5	t_6
d_1	0	5	0	8	10	4
d_2	32	0	0	16	7	19
d_3	0	17	9	4	0	0
d_4	22	3	0	5	12	15
d_5	0	9	12	0	2	4

b. Discuss how data mining can be achieved on temporal and spatial databases?

10 a. Discuss the dimensions and measures of a spatial data cube with example.

b. Explain the following:

i) Similarity search

ii) Multi dimensional analysis

* * *

10

10

10

10