U.S.N					

Max. Marks: 100

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

First Semester, M. Tech - VLSI Design and Embedded System (MECE)
Semester End Examination; Jan. - 2020
CMOS VLSI Design

Time: 3 hrs

Note: Answer *FIVE* full questions, selecting *ONE* full question from each unit. UNIT - I 1 a. Analyze the impact of second order effect on the device performance with respect to, i) Body effect 8 ii) Mobility variation iii) Punch through effect b. Along with VTC and current waveform analyze the inverter design in all 5 regions 12 of operation. 2 a. Analyze the impact of second order effect on the device performance with respect to, i) Tunneling 6 ii) Hot electron effect b. Obtain the small signal equivalent of MOSFET and comment on resistance variations. 6 c. Obtain the capacitance model of MOSFET. 8 **UNIT-II** 3 a. Obtain the schematic for the function $Y = \overline{(AB+C)D}$, using; 6 i) CMOS ii)Transmission gates b. Obtain the expression for V_{OL} and V_{OH} with respect to resistive load nmos inverter 14 along with schematic and VTC. 4 a. Analyze, alternate forms of pull-up's used in realizing nmos inverter along with VTC. 12 b. Why CMOS inverter is preferred over nmos? Obtain the response curve if, 8 ii) $\beta_n \neq \beta_p$ i) $\beta_n = \beta_p$ **UNIT - III** 5 a. Analyze the performance of SR latch along with schematic and timing diagram. 6

b. Why CMOS inverter is preferred over nmos? Obtain the response curve if,

i) β_n = β_p ii) β_n≠ β_p

UNIT - III

5 a. Analyze the performance of SR latch along with schematic and timing diagram.

6 b. Obtain the expression for C_{boot} using voltage boot strapping principle.

c. Analyze the basic principle employed in static RAM with necessary diagram.

8 c. Analyze the performance of CMOS D latch along with schematic and timing diagram.

6 b. "Dynamic CMOS logic circuits cannot be cascaded". Justify.

6 c. Analyze the basic operation of dynamic RAM along with necessary diagram.

8 8

UNIT - IV

7 a.	List and discuss the causes and remedies of latch—up in <i>n</i> -well CMOS inverter.					
b.	b. Analyze the charge sharing phenomenon in dynamic CMOS circuits.					
8 a.	a. Realize the pipeline architecture using Domino CMOS structure.					
b.	b. Obtain the various techniques employed for clock generation.					
	UNIT - V					
9 a.	Analyze the LDD refractory gate in current CMOS technology.	8				
b.	b. Realize the schematic and the stick diagram (Using CMOS) for the function,					
	$Y = \overline{A + BC}.$	6				
c.	Obtain the delay expression in;					
	i) NMOS inverter	6				
	ii) CMOS inverter					
10 a.	Analyze the performance of multilayer connect in current CMOS technology.	6				
b.	b. Realize the schematic and symbolic layout for the function,					
$Y = \overline{AB + CD}.$						
c.	Obtain the expression for propagation delay in a cascaded network of varying sizes.	8				

* * *