10

U.S.N P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) First Semester, M.Tech. - Mechanical Engineering (MMDN) Semester End Examination; Jan. - 2020 **Advanced Machine Design** Time: 3 hrs Max. Marks: 100 *Note: i*) *Answer FIVE full questions*, *selecting ONE full question from each unit*. *ii) Missing data, if any, may be suitably assumed.*

iii) Use of Data Hand book is permitted.

UNIT - I

- List any ten mechanical failure modes of metals. 10 1 a. b. Explain with neat sketch rotating pure bending testing. 10 Discuss; (i) Fail-Safe design (ii) Damage-tolerant design. 2 a. 10 Sketch any ten different fatigue test specimens. 10 b. **UNIT - II**
- Discuss mean stress effects on S-N behaviour. 10 3 a. Discuss palmgren-minear linear damage rule. b. 10
- 4 a. Explain the following:

5 a.

- (i) Effect of micro structure on S-N behaviour
- (ii) Rain flow cycle counting method

Substantiate the following statement:

b. An un-notched circular rod with a diameter of 10 mm is subjected to constant amplitude ending at room temperature, with S_m = 200 MPa, the material is 4340 quenched and tempered alloys steel with $S_u = 1240$ MPa, $S_y = 1170$ MPa, and $S_y'= 1000$ MPa. If the rod is commercially 10 polished, estimate the values of Sa, S_{max} , S_{min} and R for a median fatigue life of 50,000 cycles and no yielding. Take; $S_f = 540$ MPa.

UNIT - III

	e			
	"Cyclic strain-controlled tests can better characterize the fatigue behaviour of material than			5
	cyclic stress-controlled tests can".			
b.	Discuss Bauschinger effect.			5
c.	Discuss strain based (\in -N) approach to life estimation.			10
6 a.	Discuss the cyclic hardening and cyclic softening.			5
b.	Sketch and explain monotonic and cyclic stress curves for;			
	(i) Aluminium 2024-T4	(ii) Man-Ten Steel		5
	(iii) Ti-811 Titanium aluminium alloy	(iv) SAE 4340 steel	(v) Waspaloy-A	
c.	Explain with a schematic representation the effect of surface finish representation the effect			10
				10

surface finish on strain-life behaviour.

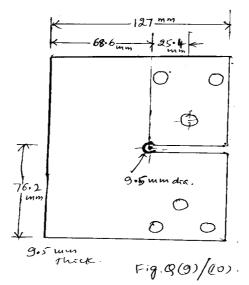
P18MMDN11

UNIT - IV

- 7 a. Explain with neat sketches, the modes of crack extension.
 - b. Explain the importance of stress intensity factor K and energy release rate G.
 - c. A very wide SAE 1020 cold-rolled thin plate is subjected to constant amplitude uniaxial cyclic loads that produce nominal stresses varying from $S_{max} = 200$ MPa to $S_{min} = 0$ MPa. The monotonic properties for this steel are $S_y = 630$ MPa, $S_u = 670$ MPa, E = 207GPa, and $K_C = 104$ MPa \sqrt{m} . What fatigue life would be attained if an initial through thickness edge crack existed and was 1 mm in length? Take intercept

 $A = 6.9 \times 10^{-12}$ m/cycle and slope n = 3.0.

- 8 a. Explain with neat sketches the crack tip plastic zone using Von-Mises Criterion for mode I. 10
- b. Discuss Wheeler model used for life estimation with fatigue crack growth.


UNIT - V

9. A notched part made from quenched and tempered hot rolled RQC-100 steel is shown in Fig. Q(9)/(10). The elastic stress concentration factor K_t is 3. The nominal stress, $S = \frac{p_A' + MC_I'}{r_1}$

is 11.25P (MPa), where P is the load in kN. $S_u = 931$ MPa, $S_y = 883$ MPa, $\sigma_f = 1330$ MPa,

 $S_y = 600 MPa$, $\sigma_f = 1240 MPa$, b = -0.07. Construct the S-N lines for,

- (i) Completely reversed, constant amplitude loading
- (ii) Constant amplitude loading with a minimum nominal stress of 50 MPa

A notched part made from quenched and tempered hot rolled RQC = 100 steel is shown in Fig. 10. Q(9)/(10). K_t = 3. Using local strain approach, find notch stress and strain amplitudes from amplitude loads 4.45 44.5 kN. constant alternating between kN and Use $S = \frac{P_A + MC_1}{1} = 11.25 P$. Take E = 207 GPa, $S_y = 883$ MPa, K = 1172 MPa, n = 0.06, $S_{y} = 600MPa$, K' = 1434 MPa, n' = 0.14, $\sigma_{f}^{1} = 1240MPa$, $\epsilon_{f} = 0.66$, b = -0.07, C = -0.69; $k_f = 2.82$. Any other data may be taken from Q.9. Use Neuber's rule, Strain energy density rule and linear rule for calculation.

6 4

10

10

20