

i) The dimensions of the shoe

ii) Coefficient of friction

Assume that the inclination of bearing surface corresponds to the maximum load carrying capacity of the bearing.

10

P18MMDN141

Page No... 2

UNIT - III

5 a.	Derive an expression for load carrying capacity of idealized full Journal bearing.	10
b.	An idealized full journal bearing has the following specifications:	
	Diameters of journal = 50 mm, length of bearing = 60 mm, speed of journal = 1200 rpm,	
	radial clearance = 0.025 mm, average viscosity of oil under operating conditions	
	is 0.0115 pas, Altitude = 0.8. Find;	10
	i) Coefficient of friction	
	ii) Load carrying capacity	
	iii) Power loss in the bearing	
6 a.	Explain clearly the significance of Sommerfeld number in idealized full journal bearing.	8
b.	List the factors to be considered when selecting the bearing length to diameter ratio.	6
c.	A journal bearing of width 1 m operates with a shaft of 200 mm diameter which rotates at	
	1200 rpm. The diametral clearance is 200 μ m and absolute viscosity of the lubricating oil at	6
	an inlet temperature of 20°C is 40 cp. For an eccentricity ratio of 0.7, calculate the minimum	
	film thickness and maximum film pressure.	
	UNIT - IV	
7 a.	Explain different types of hydrostatic lubrication systems.	8
b.	Derive an expression for discharge and load carrying capacity of hydrostatic step bearing.	12
8 a.	A hydro static circular pad bearing operating under minimum oil film thickness of 50 μ m	
	supports a vertical load of 50 kN at a shaft of 2000 rpm. The lubricant viscosity at operating	
	temperature of 8.5 cp. The recess pressure is 2 MPa and the external pressure outside the	10
	bearing is = 0. Assuming d_2/d_1 = 3, calculate;	10
	i) Bearing dimensions ii) Ratio of oil flow	
	iii) Power loss iv) Coefficient of friction	
b.	Explain the meaning of EHL. Give a detailed account of different regimes in EHL contacts.	10
UNIT - V		
9 a.	Explain the governing differential equation for gas bearing.	10
b.	What is porous bearing? How does the Reynolds equation is modified for porous bearing?	10
10 a.	Explain the role of following components in an active magnetic bearing construction:	
	i) Position sensor	8
	ii) Controller	U
	iii) Power amplifier	
b.	Explain the advantages of magnetic bearings and mention their industrial applications.	8
c.	Distinguish clearly between passive magnetic bearing and active magnetic bearing.	4