

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi) Eighth Semester, B.E. - Civil Engineering

Semester End Examination; Aug. / Sep. - 2020

Earthquake Resistant Design of Structures

Max. Marks: 100 Time: 3 hrs

Note: i) Answer TWO full questions, selecting ONE full question from UNIT - I and UNIT - II.

- ii) Answer any THREE full questions, choosing from UNIT III, UNIT IV and UNIT V.
- iii) Use of only IS-1893-2002 is permitted.

UNIT - I

- 1. Explain the following:
 - i) Strong ground motion

- ii) Elastic rebound theory
- iii) Seismograph-working principle
- iv) Seismic moment

OR

- What is site effect? Explain its significance in earthquake resistant design of structure. 2 a.
 - 10
 - Explain how torsion get's induced in buildings with neat sketch. b.

UNIT-II

- Explain the following with neat sketches:
 - i) Plan Irregularities ii) Vertical Irregularities

OR

- Explain with sketches various lateral load resisting systems adopted in structures. 4 a.
- 8
 - What are the various building characteristics affecting the performance of building during earthquake? Briefly explain.

UNIT-III

- Briefly explain the earthquake resistant design philosophy. 5 a.
- The plan and elevation of a three-storey RCC school building is shown in Fig. Q.5(b). The
 - building is loacted in seismic zone V. The type of soil encountered is medium stiff and it is proposed to design the building with a special moment resisting frame with brick infill. The intensity of dead load is 10 kN/m² and the floors are to cater to an imposed laod of 3 kN/m².

Determine the design seismic loads on the structure by equivalent static analysis.

12

20

10

20

12

8

10

10

10

10

10

10

10

10

10

10

- 6 a. Explain various modes of failure of masonry building with neat sketches.b. Determine the lateral forces on a two-storey unreinforced brick masonry building resting
 - b. Determine the lateral forces on a two-storey unreinforced brick masonry building resting on medium soil as shown in Fig. Q6(b) situated near Allahabad for the following data:

Plan size = $18 \text{ m} \times 8 \text{ m}$ Total height of the building = 6.2 mStorey height = 3.1 m

Weight of roof = 2.5 kN/m^2 Weight of wall = 5.0 kN/m^2

UNIT-IV

- 7 a. Explain briefly, basic parameters required for dynamic analysis of soil-structure system.
 - b. What is liquefaction? What are the various factors affecting the liquefaction characteristics?
- 8 a. What is ductility? Why it is required? What are the factors affecting ductility?
 - b. Briefly explain how the "member ductility" and "structural system ductility" can be estimated for RC structures. Explain the relation between them with neat sketches.

UNIT - V

- 9 a. Define base isolation and what are the principles involved in seismic base isolation of buildings?
- b. What is ment by seismic evaluation? Explain the methods adopted for seismic evaluation and the necessity of seismic evaluation.
- 10 a. Explain the conventional methods adopted in retrofitting of RC buildings.
 - b. Explain different methods adopted for retrofitting of masonary buildings.

* * * *

Dr. N. L. MURALI KRISHNA
Controller Of Examinations

O. Carillen

P.E.S. College of Engineering

• *utonomous institution under VTU, Belgaum)

MANDYA-571 401, Kamataka